

August 2, 2018

PARECORP.COM

Mr. Leo Hellested, P.E.
Office of Waste Management
Solid Waste Section
Rhode Island Department of Environmental Management
235 Promenade Street
Providence, Rhode Island 02908-5767

Attn: Mr. Robert Schmidt

Re: Quarterly Monitoring Report

2nd Quarter (June) 2018, Groundwater Monitoring, Sampling, and Analysis

Tiverton Municipal Sanitary Landfill

Pare Project No.: 94139.24

Dear Mr. Hellested:

Enclosed herewith are results of the statistical analysis of groundwater monitoring data for the second quarterly monitoring round of Year 2018 from the Tiverton Landfill (Landfill). Pare Corporation (Pare) has prepared this report on behalf of the Town of Tiverton (Town). In the 2017 Annual Groundwater Monitoring Report, Pare recommended that overburden well OW-7 and bedrock well OW-16 be included in the groundwater monitoring program. As such, Pare conducted the groundwater sampling on June 7, 2018 at the background well OW-9 and compliance wells OW-7, OW-12, OW-13, OW-14, OW-15, and OW-16.

Groundwater samples were analyzed by New England Testing Laboratory (NETLAB) of West Warwick, Rhode Island for the constituents listed in Appendix A (Detection Monitoring) of the State Solid Waste Regulations, plus the Appendix B metals mercury and tin, which are routinely included. Certified laboratory results data are enclosed and are summarized on attached Tables 1-3.

Groundwater field parameters consisting of temperature, pH, and specific conductivity were measured at each monitoring well, in accordance with the RIDEM-approved Groundwater Monitoring Plan for the Landfill. Field parameters were collected until three successive measurements stabilized within \pm 3% for temperature, \pm 0.1 standard unit for pH, and \pm 3% for specific conductivity, in accordance with US EPA's Low-Flow (Minimal Drawdown) Groundwater Sampling Procedures. Field parameters are documented on Field Sampling Data Sheets, which are enclosed.

Combustible gases are monitored at each well and at the top of the Landfill. Combustible gases were unable to be monitored at the Landfill in June 2018 due to a malfunction of the gas monitoring equipment at the time of sampling.

Recent sampling rounds have been during periods of dry conditions; as such, samples collected contained a high amount of silt and suspended particles. Reported concentrations of heavy metals were higher than usual, and the degree of suspended particles observed in the samples may have impacted heavy metal concentrations. Pare believes these results were an anomaly and not indicative of typical groundwater quality. Therefore, Pare

Mr. Leo Hellested, P.E. (2) August 2, 2018

updated the groundwater monitoring program in the 2016 Annual Groundwater Monitoring Report to include a 10-15 settling minute period for turbidity to drop out of suspension, before the sample is decanted and then stored in laboratory glassware with preservative. Additionally, during the March 2017 monitoring round, accumulated sediment in the bottom of wells at the Landfill was removed prior to sampling.

HUMAN HEALTH THRESHOLD EVALUATION

Compliance Well OW-7 – Six (6) target metals were reported in the groundwater sample collected from OW-7. One (1) reported metal, arsenic (0.01 mg/L), was reported at its MCL (0.01 mg/L). One (1) target VOC, MTBE, was reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-7.

Compliance Well OW-12 – Five (5) target metals were reported in the groundwater sample collected from OW-12. One (1) reported metal, arsenic (0.01 mg/L), was reported at its MCL (0.01 mg/L). No (0) target VOCs were reported above laboratory detection limits at OW-12.

Compliance Well OW-13 – Eight (8) target metals were reported in the groundwater sample collected from OW-13. One (1) reported metal, arsenic (0.02 mg/L), was reported above its MCL (0.01 mg/L). Two (2) target VOCs; chlorobenzene and MTBE; were reported above laboratory detection limits at OW-13.

Compliance Well OW-14 – Seven (7) target metals were reported in the groundwater sample collected from OW-14. Two (2) reported metals; arsenic (0.01 mg/L) and cadmium (0.006 mg/L); were reported at or above their MCLs (0.01 mg/L and 0.005 mg/L, respectively). Four (4) target VOCs; benzene, chlorobenzene, 1,4-dichlorobenzene and MTBE; were reported above their laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-14.

Compliance Well OW-15 – Six (6) target metals were reported in the groundwater sample collected from OW-15. Two (2) reported metals; arsenic (0.03 mg/L) and cadmium (0.01 mg/L); exceeded their MCLs (0.01 mg/L and 0.005 mg/L, respectively). Three (3) target VOCs; benzene, chlorobenzene and MTBE; were reported above their laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-15.

Compliance Well OW-16 (new bedrock well) – Seven (7) target metals were reported in the groundwater sample collected from OW-16. One (1) reported metal, arsenic (0.01 mg/L), was reported at its MCL (0.01 mg/L). One (1) target VOC, MTBE, was reported above laboratory detection limits. No (0) target VOCs were reported above their corresponding MCLs or human health thresholds at OW-16.

<u>Background Well OW-9</u> – Five (5) target metals were reported in the groundwater sample collected from OW-9. No (0) target metals were reported above their corresponding MCLs or human health thresholds at OW-9. No (0) target VOCs were reported above laboratory detection limits at OW-9.

Mr. Leo Hellested, P.E. (3) August 2, 2018

TOLERANCE INTERVAL STATISTICAL EVALUATION

The Tolerance Interval (TI) approach was used to develop Tolerance Limits (TLs) for each target inorganic constituent (i.e., metals) using the background well analytical results from the eight preceding rounds for which analytical results are available. The background well, OW-9, could not be sampled in several previous monitoring rounds including in the September 2016, June 2017, and September 2017 monitoring rounds due to dry conditions. Therefore, analytical results of the eight most recent rounds in which samples could be collected were utilized to generate the TLs for this monitoring round, dating back to December 2014. The TI approach is considered inappropriate for analysis of organic constituents and was therefore not performed to evaluate the results of reported VOCs. Table 2 summarizes historical results data from OW-9 used in the calculation of the TLs.

Three (3) of the metals concentration reported in June 2018; arsenic, barium and cobalt; exceeded the corresponding TLs calculated during this monitoring round in at least one compliance well. In total, there were ten (10) TL exceedances of these metals in this monitoring round. The TLs and the corresponding compliance well data from this monitoring round are presented in Table 3. Each of these metals is routinely detected in groundwater beneath the landfill.

CUSUM METHOD STATISTICAL EVALUATION

The Shewhart-CUSUM Method, a supplemental statistical analysis method used in addition to the TI Method, was performed in accordance with the US EPA documents titled "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Interim Final Guidance, April 1989" and "Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities – Addendum to Interim Final Guidance, July, 1992".

Barium and nickel at OW-12; and cadmium at OW-15; exceeded both of their Shewhart-CUSUM thresholds during the June 2018 monitoring round.

The dry conditions present during the September 2016 monitoring round were believed by Pare to have resulted in higher than usual suspended solids in samples collected, which are believed to have also resulted in atypical metals concentrations. As a result, the results of the Shewhart-CUSUM analysis for September 2016 were believed to be an anomaly. In many cases these deviations are outside of the statistical range expected. With the inception of the updated groundwater monitoring program, Pare has reset the Shewhart-CUSUM levels for several metals at multiple wells in order to have an accurate representation of cumulative statistical analysis of these constituents. The metals that have had their Shewhart-CUSUM thresholds reset include: chromium, lead, nickel, vanadium, and zinc at OW-12; barium, cadmium, cobalt, copper, lead, and vanadium at OW-13; zinc at OW-14; and arsenic, cadmium, chromium, cobalt, lead, nickel, vanadium, and zinc at OW-15. It should be noted that the reset of zinc at OW-14 is due to a statistical spike in the Shewhart-CUSUM limit during the September 2015 monitoring round (which was also sampled during dry conditions). These Shewhart-CUSUM parameters were reset prior to the March 2017 sampling round; therefore, data recorded from the March 2017 monitoring round is present in the analysis.

Mr. Leo Hellested, P.E. (4) August 2, 2018

ASSESSMENT MONITORING

The Shewhart-CUSUM analysis is utilized, along with the Tolerance Limits, to identify when Assessment Monitoring should be performed.

Pare performed Assessment Monitoring at OW-14 in the December 2017 monitoring round due to an exceedance of the Shewhart-CUSUM threshold of antimony in the June 2017 monitoring period. This Assessment Monitoring was delayed from September 2017 to December 2017 due to dry conditions in September, rendering a sample unattainable. One Appendix B parameter, sulfides (0.04 mg/L), was detected in the December 2017 monitoring round. In the 2017 Annual Groundwater Monitoring report, Pare recommended that groundwater samples from OW-14 in the March 2018 monitoring round be tested again for sulfides. Again, the Appendix B parameter sulfides (0.04 mg/L) was detected in the samples collected from OW-14 in March 2018.

Pare performed Assessment Monitoring at OW-13 in the June 2018 monitoring round due to an exceedance of both the TL and the Shewhart-CUSUM threshold of barium in the March 2018 monitoring round. No (0) Appendix B parameters were reported in samples collected from OW-13. Sulfides were not detected at OW-13 in the June 2018 monitoring round.

MTBE ANALYSIS

Many of the most recent Assessment Monitoring rounds have been conducted due to MTBE concentrations in groundwater. Reported MTBE concentrations have generally risen since September 2006, as depicted in the attached figure titled Reported Concentrations of MTBE. The figure compares the recent increases in reported MTBE concentrations at OW-13, OW-14 and OW-15 to historical concentrations and drinking water advisories defined in the US EPA document titled "2011 Edition of the Drinking Water Standards and Health Advisories". Although reported MTBE concentrations appear to be trending slowly upward, MTBE has never been reported above its odor threshold (0.020 mg/L) or its taste threshold (0.040 mg/L). The US EPA has not established a human health advisory concentration for MTBE.

Because the elevated concentrations of MTBE have recently triggered Assessment Monitoring at OW-13, OW-14, and OW-15, and that no Appendix B parameters were reported to a significant degree at these wells, it is Pare's opinion that the increasing trend in MTBE concentrations beneath the Landfill is an isolated phenomenon and not the result of a significant change in groundwater quality beneath the Landfill.

Despite CUSUM values of MTBE at OW-13, OW-14, and OW-15 remaining above their threshold during the September 2017 monitoring round, Pare does not recommend assessment monitoring due to the aforementioned MTBE trend. The lack of Appendix B parameters in the past, in conjunction with the lack of Appendix B parameters at OW-13 and OW-15 during the December 2016 monitoring round, and the lack of Appendix B parameters at OW-14 during the June 2016 monitoring round, suggests that the presence of MTBE trend does not indicate an increased likelihood that Appendix B parameters would be present beneath the Landfill.

Mr. Leo Hellested, P.E. (5) August 2, 2018

CONCLUSIONS AND RECOMMENDATIONS

Currently, the Landfill conducts Detection Monitoring for the parameters listed in Appendix A of the State Solid Waste Regulations, as well as mercury and tin. During this monitoring round, three (3) metals; arsenic, barium and cobalt; exceeded their tolerance limits (TLs) in at least one well. Arsenic and barium also exceeded their TLs during the previous monitoring round at OW-13 and OW-15, and OW-13, OW-14 and OW-15, respectively. TL exceedances in two consecutive monitoring rounds is one of the criteria used to consider introducing Assessment Monitoring in subsequent monitoring rounds.

Pare recommends that Assessment Monitoring be discontinued at OW-13 due to the lack of Appendix B parameters detected during the Assessment Monitoring performed in the June 2018 monitoring round. Additionally, Pare does not recommend Assessment Monitoring at the Landfill during the upcoming September 2018 monitoring round as the criteria to warrant Assessment Monitoring were not met in the June 2018 monitoring round.

During the 2016 and 2017 monitoring periods, a rising trend in detections of antimony at the compliance wells became apparent. Antimony was detected at the background well above its MCL during the December 2017 monitoring round. Previously, antimony had not been detected at the background well since the September 2011 monitoring round. The detection of antimony at compliance well OW-14 in the June 2017 monitoring round triggered Assessment Monitoring, which was performed in the December 2017 monitoring round. The Assessment Monitoring resulted in detection of one Appendix B parameter, sulfides (0.04 mg/L). However, antimony was not detected at any groundwater well during the December 2017 monitoring period. Analysis of the samples collected from OW-14 during the March 2018 monitoring round indicated another detection of sulfides (0.04 mg/L). Assessment Monitoring was not performed at OW-14 in June, but was performed at OW-13. Sulfides were not detected in the Assessment Monitoring performed at OW-13 during the June 2018 monitoring round.

The EPA has no MCL for sulfides in groundwater. Water with dissolved hydrogen sulfide will smell musty or swampy around 0.5-1.0 mg/L, and Pare did not identify a noticeable smell emanating from the groundwater sample in either round during which the constituent was detected. Hydrogen sulfide gas can occur naturally in groundwater from plant materials rotting underground in anaerobic conditions. Hydrogen sulfide gas could also be resulting from gypsum buried at the Landfill. Pare recommends that sulfides be again tested for at OW-14 in the September 2018 monitoring round. Additionally, Pare recommends that the Town consider adding regular analysis of sulfides to the groundwater monitoring program.

Pare recommended that wells OW-7 and OW-16 be incorporated into the compliance monitoring regimen in the 2017 Annual Groundwater Monitoring Report. Despite OW-7 having several years of sampling data, the sampling rounds were selected on a rotating basis with wells OW-6 and OW-8 for alternate monitoring. Pare recommends that wells OW-7 and OW-16 be sampled for two years, or eight consecutive monitoring rounds, prior to initiating statistical analysis. The June 2018 monitoring period marks the second monitoring round that these wells are to be sampled consistently; therefore, it is estimated that statistical analysis for the bedrock and overburden wells will begin in the March 2020 monitoring round.

Mr. Leo Hellested, P.E. (6) August 2, 2018

Samples have been unable to be collected at the background well OW-9 in recent monitoring rounds. Dating back to September 2016, three out of the last eight monitoring rounds have resulted in a dry well (although Pare was able to collect a sample in June 2018). The tolerance interval analysis is dependent on data collected from the background well; therefore, uncharacteristic TL exceedances may be a result of the lack of recent historical data from this well. Pare will be able to more accurately assess this potential changing trend in groundwater quality with more data collection from the background well.

Recent monitoring rounds also indicate there is an increasing trend of barium and cadmium in groundwater at the Landfill. However, Assessment Monitoring triggered by exceedances of barium and cadmium have resulted in no (0) detections of Appendix B parameters. Pare will continue to evaluate antimony, barium, cadmium, and sulfides trends at the Landfill in subsequent monitoring rounds.

Should the RIDEM have any questions regarding this letter or the attached data, please feel free to contact the undersigned at (401) 334-4100, thank you.

Very truly yours,

Timothy P. Thies, P.E.

Vice President

TPT/TCJ/abv

Attachments

cc: Jay Lambert, Tiverton Landfill Subcommittee (w/encl.)

Jan Reitsma, Tiverton Town Administrator (w/encl.)

Travis C. Johnson, Pare Corporation (w/o encl.)

George G. Palmisciano, P.E. Pare Corporation (w/o encl.)

Z:\JOBS\01 - Earlier Jobs\94139.00\94139.24\June 2018\June 2018 Quarterly Report.doc

<u>ATTACHMENT NO. 1</u> LABORATORY ANALYTICAL DATA REPORT

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 8F08028 Client Project: 94139 - Tiverton Landfill

Report Date: 15-June-2018

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 06/08/18. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 8F08028. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
8F08028-01	OW-7	Water	06/07/2018	06/08/2018
8F08028-02	OW-9	Water	06/07/2018	06/08/2018
8F08028-03	OW-12	Water	06/07/2018	06/08/2018
8F08028-04	OW-14	Water	06/07/2018	06/08/2018
8F08028-05	OW-15	Water	06/07/2018	06/08/2018
8F08028-06	OW-16	Water	06/07/2018	06/08/2018

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

OW-12 (Lab Number: 8F08028-03)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

OW-14 (Lab Number: 8F08028-04)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

OW-15 (Lab Number: 8F08028-05)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C

Request for Analysis (continued)

OW-15 (Lab Number: 8F08028-05) (continued)

<u>Analysis</u>	<u>Method</u>
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

OW-16 (Lab Number: 8F08028-06)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Request for Analysis (continued)

OW-7 (Lab Number: 8F08028-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

OW-9 (Lab Number: 8F08028-02)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
Selenium	EPA 6010C
Silver	EPA 6010C
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Method References

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

CASE NARRATIVE:

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds in italics were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Sample: OW-7 Case Number: 8F08028

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.001
7440-38-2	Arsenic	6010C	0.01	0.002
7440-39-3	Barium	6010C	0.028	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	ND	0.001
7440-47-3	Chromium	6010C	0.004	0.001
7440-48-4	Cobalt	6010C	0.015	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.018	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.014	0.005

Sample: OW-9 Case Number: 8F08028

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.001
7440-38-2	Arsenic	6010C	ND	0.002
7440-39-3	Barium	6010C	0.009	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	ND	0.001
7440-47-3	Chromium	6010C	0.003	0.001
7440-48-4	Cobalt	6010C	ND	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	0.001	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.001	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.009	0.005

Sample: OW-12 Case Number: 8F08028

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	0.001	0.001
7440-38-2	Arsenic	6010C	0.01	0.002
7440-39-3	Barium	6010C	0.020	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	ND	0.001
7440-47-3	Chromium	6010C	ND	0.001
7440-48-4	Cobalt	6010C	ND	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.025	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.009	0.005

Sample: OW-14 Case Number: 8F08028

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.001
7440-38-2	Arsenic	6010C	0.01	0.002
7440-39-3	Barium	6010C	0.155	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	0.006	0.001
7440-47-3	Chromium	6010C	0.001	0.001
7440-48-4	Cobalt	6010C	0.006	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.012	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.031	0.005

Sample: OW-15 Case Number: 8F08028

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	ND	0.001
7440-38-2	Arsenic	6010C	0.03	0.002
7440-39-3	Barium	6010C	0.096	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	0.010	0.001
7440-47-3	Chromium	6010C	ND	0.001
7440-48-4	Cobalt	6010C	0.012	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.023	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.032	0.005

Sample: OW-16 Case Number: 8F08028

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	0.002	0.001
7440-38-2	Arsenic	6010C	0.01	0.002
7440-39-3	Barium	6010C	0.011	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	ND	0.001
7440-47-3	Chromium	6010C	0.004	0.001
7440-48-4	Cobalt	6010C	0.002	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.009	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.022	0.005

Case Number: 8F08028

Sample: OW-7 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile Methacrylonitrile	ND ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-7 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.56	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	95.2	70-130
1,2-Dichloroethane d4	94.1	70-130
4 BFB	93.5	70-130

Case Number: 8F08028

Sample: OW-9 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile Methacrylonitrile	ND ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-9 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	96.9	70-130
1,2-Dichloroethane d4	99.2	70-130
4 BFB	89.8	70-130

Sample: OW-12 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-12 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	ND	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	96.8	70-130
1,2-Dichloroethane d4	97.5	70-130
4 BFB	89.2	70-130

Case Number: 8F08028

Sample: OW-14 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	2.77	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	13.3	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-14 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	2.62	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	6.23	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	95.8	70-130
1,2-Dichloroethane d4	96.7	70-130
4 BFB	94.9	70-130

Sample: OW-15 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	1.67	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	12.72	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-15 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	6.61	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	95.8	70-130
1,2-Dichloroethane d4	94.9	70-130
4 BFB	98.9	70-130

Case Number: 8F08028

Sample: OW-16 Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	ND	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Sample: OW-16 Case Number: 8F08028

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	6.53	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	94.6	70-130
1,2-Dichloroethane d4	95.5	70-130
4 BFB	90.7	70-130

0 ¥

**Netlab spoontracts the following tests: Radiologicals, Radon, Asbestos, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

REPORT OF ANALYTICAL RESULTS

NETLAB Work Order Number: 8F08027 Client Project: 94139 - Tiverton Landfill

Report Date: 15-June-2018

Prepared for:

Travis Johnson
Pare Corporation
8 Blackstone Valley Place
Lincoln, RI 02865

Richard Warila, Laboratory Director New England Testing Laboratory, Inc. 59 Greenhill Street West Warwick, RI 02893 rich.warila@newenglandtesting.com

Samples Submitted:

The samples listed below were submitted to New England Testing Laboratory on 06/08/18. The group of samples appearing in this report was assigned an internal identification number (case number) for laboratory information management purposes. The client's designations for the individual samples, along with our case numbers, are used to identify the samples in this report. This report of analytical results pertains only to the sample(s) provided to us by the client which are indicated on the custody record. The case number for this sample submission is 8F08027. Custody records are included in this report.

Lab ID	Sample	Matrix	Date Sampled	Date Received
8F08027-01	OW-13	Water	06/07/2018	06/08/2018

Request for Analysis

At the client's request, the analyses presented in the following table were performed on the samples submitted.

OW-13 (Lab Number: 8F08027-01)

<u>Analysis</u>	<u>Method</u>
Antimony	EPA 6010C
Arsenic	EPA 6010C
Barium	EPA 6010C
Beryllium	EPA 6010C
Cadmium	EPA 6010C
Chromium	EPA 6010C
Cobalt	EPA 6010C
Copper	EPA 6010C
Cyanide	SM4500-CN-E
Herbicides	EPA 8151A
Lead	EPA 6010C
Mercury	EPA 7470A
Nickel	EPA 6010C
PCBs	EPA 8082A
Pesticides	EPA 8081B
Selenium	EPA 6010C
Semivolatile Organic Compounds	EPA 8270D
Silver	EPA 6010C
Sulfide	SM4500-S-D
Thallium	EPA 7010
Tin	EPA 6010C
Vanadium	EPA 6010C
Volatile Organic Compounds	EPA 8260C
Zinc	EPA 6010C

Method References

Standard Methods for the Examination of Water and Wastewater, 20th Edition, APHA/ AWWA-WPCF, 1998

Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, SW846, USEPA

Case Narrative

Sample Receipt

The samples were all appropriately cooled and preserved upon receipt. The samples were received in the appropriate containers. The chain of custody was adequately completed and corresponded to the samples submitted.

Metals

All analyses were performed according to NETLAB's documented Standard Operating Procedures, within all required holding times, and with appropriate quality control measures. All QC was within laboratory established acceptance criteria. The samples were received, processed, and reported with no anomalies.

Herbicides

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

PCBs

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Pesticides

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Semi-volatile Compounds

All samples were extracted and analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria.

Volatile Organic Compounds

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures. The results for the associated calibration, method blank and laboratory control sample (LCS) were within method specified quality control criteria. Those compounds in italics were qualitatively screened via reconstructed ion chromatography and no detections were identified to the listed PQLs.

Wet Chemistry

All samples were analyzed within method specified holding times and according to NETLAB's documented standard operating procedures.

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
57-12-5	Cyanide	9014	ND	0.01
18496-25-8	Sulfide	376.2	ND	0.01

ND = Not Detected

CAS RN	Common Name	Method	Result, ppm	PQL (ppm)
7440-36-0	Antimony	6010C	0.002	0.001
7440-38-2	Arsenic	6010C	0.02	0.002
7440-39-3	Barium	6010C	0.089	0.001
7440-41-7	Beryllium	6010C	ND	0.001
7440-43-9	Cadmium	6010C	0.004	0.001
7440-47-3	Chromium	6010C	0.002	0.001
7440-48-4	Cobalt	6010C	0.011	0.001
7440-50-8	Copper	6010C	ND	0.005
7439-92-1	Lead	6010C	ND	0.001
7439-97-6	Mercury	7470A	ND	0.0002
7440-02-0	Nickel	6010C	0.011	0.001
7782-49-2	Selenium	6010C	ND	0.002
7440-22-44	Silver	6010C	ND	0.001
7440-28-0	Thallium	6010C	ND	0.0002
7440-34-5	Tin	6010C	ND	0.002
7440-62-2	Vanadium	7010	ND	0.001
7440-66-6	Zinc	6010C	0.012	0.005

ND = Not Detected

Method: 8151A

CAS RN	Common Name	Result, ppb	PQL (ppb)
93-76-5	2,4,5-T	ND	1.0
94-75-7	2,4-D	ND	1.0
88-85-7	Dinoseb	ND	1.0
93-72-1	Silvex (2,4,5-TP)	ND	1.0

Surrogates:

Compound% RecoveryLimitsDCMA10630-150

Method: 8081B & 8082A

CAS RN	Common Name	Result, ppb	PQL (ppb)
72-54-8	4,4'-DDD	ND	0.02
72-55-9	4,4'-DDE	ND	0.02
50-29-3	4,4'-DDT	ND	0.02
309-00-2	Aldrin	ND	0.02
319-84-6	alpha-BHC	ND	0.02
319-85-7	beta-BHC	ND	0.02
319-86-8	delta-BHC	ND	0.02
60-57-1	Dieldrin	ND	0.02
959-98-8	Endosulfan I	ND	0.02
33213-65-9	Endosulfan II	ND	0.02
1031-07-8	Endosulfan sulfate	ND	0.02
72-20-8	Endrin	ND	0.02
7421-93-4	Endrin aldehyde	ND	0.02
58-89-9	gamma-BHC (Lindane)	ND	0.02
76-44-8	Heptachlor	ND	0.02
1024-57-3	Heptachlor epoxide	ND	0.02
72-43-5	Methoxychlor	ND	0.02
8001-35-2	Toxaphene (chlorinated camphene)	ND	0.50
	Polychlorinated biphenyls (PCBs)	ND	0.2

Surrogates:

Compound	% Recovery	Limits
TCMX	54.8	30-129
DCMP	74.1	30-126

ND = Not Detected

Case Number: 8F08027

Sample: OW-13 Method: 8270

CAS RN	Common Name	Result, ppb	PQL (ppb)
126-68-1	0,0,0-Triethyl phosphorothioate	ND	4.0
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	4.0
20-82-1	1,2,4-Trichlorobenzene	ND	4.0
130-15-4	1,4-Naphthoquinone	ND	4.0
134-32-7	1-Naphthylamine	ND	4.0
58-90-2	2,3,4,6-Tetrachlorophenol	ND	4.0
95-95-4	2,4,5-Trichlorophenol	ND	4.0
88-06-2	2,4,6-Trichlorophenol	ND	2.0
120-83-2	2,4-Dichlorophenol	ND	2.0
105-67-9	2,4-Dimethylphenol (m-Xylenol)	ND	2.0
51-28-5	2,4-Dinitrophenol	ND	2.0
121-14-2.	2,4-Dinitrotoluene	ND	4.0
87-65-0	2,6-Dichlorophenol	ND	4.0
606-20-2	2,6-Dinitrotoluene	ND	4.0
53-96-3	2-Acetylaminofluorene (2-AAF)	ND	8.0
91-58-7	2-Chloronaphthalene	ND	4.0
95-57-8	2-Chlorophenol	ND	2.0
91-57-6	2-Methylnaphthalene	ND	4.0
91-59-8	2-Naphthylamine	ND	4.0
91-94-1	3,3'-Dichlorobenzidine	ND	8.0
119-93-7	3,3'-Dimethylbenzidine	ND	4.0
56-49-5	3-Methylcholanthrene	ND	4.0
534-52-1	4,6-Dinitro-o-cresol	ND	20.0
92-67-1	4-Aminobiphenyl	ND	8.0
101-55-3	4-Bromophenyl phenyl ether	ND	4.0
7005-72-3	4-Chlorophenyl phenyl ether	ND	4.0
99-55-8	5-Nitro-o-toluidine	ND	4.0
57-97-6	7,12-Dimethylbenz[a]anthracene	ND	4.0
83-32-9	Acenaphthene	ND	4.0
208-96-8	Acenaphthylene	ND	4.0
98-86-2	Acetophenone	ND	4.0
120-12-7	Anthracene	ND	4.0
56-55-3	Benzo[a]anthracene (Benzanthracene)	ND	4.0
50-32-8	Benzo[a]pyrene	ND	4.0
205-99-2	Benzo[b]fluoranthene	ND	4.0
191-24-2	Benzo[ghi]perylene	ND	4.0
207-08-9	Benzo[k]fluoranthene	ND	4.0
100-51-6	Benzyl alcohol	ND	8.0
111-91-1	Bis(2-chloroethoxy)methane	ND	2.0
111-44-4	Bis(2-chloroethyl) ether	ND ND	2.0
108-60-1	Bis-(2-chloroisopropyl) ether	ND	4.0
117-81-7	Bis (2-ethylhexyl) phthalate	ND ND	8.0

Case Number: 8F08027

Sample: OW-13 Method: 8270

CAS RN	Common Name	Result, ppb	PQL (ppb)
85-68-7	Butyl benzyl phthalate	ND	2.0
	Chlordane (technical)	ND	20.0
510-15-6	Chlorobenzilate	ND	4.0
218-01-9	Chrysene	ND	4.0
2303-16-4	Diallate	ND	4.0
53-70-3	Dibenz[a,h]anthracene	ND	4.0
132-64-9	Dibenzofuran	ND	4.0
84-66-2	Diethyl phthalate	ND	2.0
60-51-5	Dimethoate	ND	8.0
131-11-3	Dimethyl phthalate	ND	2.0
84-74-2	Di-n-butyl phthalate	ND	2.0
117-84-0	Di-n-octyl phthalate	ND	4.0
122-39-4	Diphenylamine	ND	4.0
298-04-4	Disulfoton	ND	4.0
62-50-0	Ethyl methanesulfonate	ND	8.0
52-85-7	Famphur	ND	8.0
206-44-0	Fluoranthene	ND	4.0
86-73-7	Fluorene	ND	4.0
118-74-1	Hexachlorobenzene	ND	4.0
87-68-3	Hexachlorobutadiene	ND	4.0
77-47-4	Hexachlorocyclopentadiene	ND	4.0
67-72-1	Hexachloroethane	ND	4.0
1888-71-7	Hexachloropropene	ND	4.0
193-39-5	Indeno(1,2,3-cd)pyrene	ND	4.0
78-59-1	Isophorone	ND	4.0
120-58-1	Isosafrole	ND	4.0
143-50-0	Kepone	ND	8.0
108-39-4	m-Cresol (3-methylphenol)	ND	4.0
99-65-0	m-Dinitrobenzene	ND	8.0
91-80-5	Methapyrilene	ND	40.0
66-27-3	Methyl methanesulfonate	ND	4.0
298-00-0	Methyl parathion	ND	4.0
99-09-2	m-Nitroaniline (3-Nitroaniline)	ND	2.0
91-20-3	Naphthalene	ND	2.0
98-95-3	Nitrobenzene	ND	4.0
55-18-5	N-Nitrosodiethylamine	ND	8.0
62-75-9	N-Nitrosodimethylamine	ND	2.0
924-16-3	N-Nitrosodi-n-butylamine	ND	4.0
86-30-6	N-Nitrosodiphenylamine	ND	2.0
621-64-7	N-Nitrosodipropylamine	ND	4.0
10595-95-6	N-Nitrosomethylethalamine	ND	4.0
100-75-4	N-Nitrosopiperidine	ND	8.0

Method: 8270

CAS RN	Common Name	Result, ppb	PQL (ppb)
930-55-2	N-Nitrosopyrrolidine	ND	10.0
95-48-7	o-Cresol (2-methylphenol)	ND	4.0
88-74-4	o-Nitroaniline (2-Nitroaniline)	ND	2.0
88-75-5	o-Nitrophenol (2-Nitrophenol)	ND	2.0
95-53-4	o-Toluidine	ND	4.0
60-11-7	p-(Dimethylamino)azobenzene	ND	4.0
56-38-2	Parathion	ND	4.0
106-47-8	p-Chloroaniline	ND	8.0
59-50-7	p-Chloro-m-cresol	ND	2.0
106-44-5	p-Cresol; 4-methylphenol	ND	4.0
608-93-5	Pentachlorobenzene	ND	4.0
82-68-8	Pentachloronitrobenzene	ND	8.0
87-86-5	Pentachlorophenol	ND	2.0
62-44-2	Phenacetin	ND	8.0
85-01-8	Phenanthrene	ND	4.0
108-95-2	Phenol	ND	1.0
298-02-2	Phorate	ND	4.0
100-01-6	p-Nitroaniline (4-Nitroaniline)	ND	8.0
100-02-7	p-Nitrophenol (4-Nitrophenol)	ND	4.0
106-50-3	p-Phenylenediamine	ND	4.0
23950-58-5	Pronamide	ND	4.0
129-00-0	Pyrene	ND	4.0
94-59-7	Safrole	ND	4.0
99-35-4	sym-Trinitrobenzene	ND	4.0
297-97-2	Thionazin	ND	8.0

Surrogates:

Compound	% Recovery	Limits
Nitrobenzene d5	86	30-130
2-Fluorobiphenyl	96	30-123
p-Terphenyl d14	123	30-130
Phenol d6	22	10-83
2,4,6-Tribromophenol	119	18-120
2-Fluorophenol	30	10-81

ND = Not Detected

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
630-20-6	1,1,1,2-Tetrachloroethane	ND	1.0
71-55-6	1,1,1-Trichloroethane	ND	1.0
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0
79-00-5	1,1,2-Trichloroethane	ND	1.0
75-34-3	1,1-Dichloroethane	ND	1.0
75-35-4	1,1-Dichloroethylene	ND	1.0
563-58-6	1,1-Dichloropropene	ND	1.0
96-18-4	1,2,3-Trichloropropane	ND	1.0
96-12-8	1,2-Dibromo-3-chloropropane(DBCP)	ND	1.0
106-93-4	1,2-Dibromoethane	ND	1.0
107-06-2	1,2-Dichloroethane	ND	1.0
78-87-5	1,2-Dichloropropane	ND	1.0
142-28-9	1,3-Dichloropropane	ND	1.0
594-20-7	2,2-Dichloropropane	ND	1.0
591-78-6	2-Hexanone (Methyl butyl ketone)	ND	5.0
108-10-1	4-Methyl-2-pentanone	ND	5.0
67-64-1	Acetone	ND	5.0
75-05-8	Acetonitrile (Methyl cyanide)	ND	5.0
107-02-8	Acrolein	ND	5.0
107-13-1	Acrylonitrile	ND	5.0
107-05-1	Allyl chloride	ND	5.0
71-43-2	Benzene	ND	1.0
74-97-5	Bromochloromethane	ND	1.0
75-27-4	Bromodichloromethane	ND	1.0
75-25-2	Bromoform (Tribromomethane)	ND	1.0
75-15-0	Carbon disulfide	ND	5.0
56-23-5	Carbon tetrachloride	ND	1.0
108-90-7	Chlorobenzene	4.72	1.0
75-00-3	Chloroethane (Ethyl chloride)	ND	1.0
67-66-3	Chloroform (Trichloromethane)	ND	1.0
126-99-8	Chloroprene	ND	5.0
156-59-2	cis-1,2-Dichloroethylene	ND	1.0
10061-01-5	cis-1,3-Dichloropropene	ND	1.0
124-48-1	Dibromochloromethane	ND	1.0
75-71-8	Dichlorodifluoromethane (CFC 12)	ND	1.0
97-63-2	Ethyl methacrylate	ND	5.0
100-41-4	Ethylbenzene	ND	1.0
78-83-1	Isobutyl alcohol	ND	20.0
465-73-6	Isodrin	ND	5.0
541-73-1	m-Dichlorobenzene	ND	1.0
126-98-7	Methacrylonitrile	ND	10.0
74-83-9	Methyl bromide (Bromomethane)	ND	1.0

Method: 8260C

CAS RN	Common Name	Result, ppb	PQL (ppb)
74-87-3	Methyl chloride (Chloromethane)	ND	1.0
78-93-3	Methyl ethyl ketone (MEK)	ND	5.0
74-88-4	Methyl iodide (Iodomethane)	ND	5.0
80-62-6	Methyl methacrylate	ND	10.0
74-95-3	Methylene bromide (Dibromomethane)	ND	1.0
75-09-2	Methylene chloride (Dichloromethane)	ND	1.0
95-50-1	o-Dichlorobenzene	ND	1.0
106-46-7	p-Dichlorobenzene	ND	1.0
107-12-0	Propionitrile (Ethyl cyanide)	ND	20.0
100-42-5	Styrene	ND	1.0
127-18-4	Tetrachloroethylene	ND	1.0
1634-04-4	tert-Butylmethylether	3.26	1.0
108-88-3	Toluene	ND	1.0
156-60-5	trans-1,2-Dichloroethylene	ND	1.0
10061-02-6	trans-1,3-Dichloropropene	ND	1.0
110-57-6	trans-1,4-Dichloro-2-butene	ND	5.0
79-01-6	Trichloroethylene	ND	1.0
75-69-4	Trichlorofluoromethane (CFC-11)	ND	1.0
108-05-4	Vinyl acetate	ND	5.0
75-01-4	Vinyl chloride (Chloroethene)	ND	1.0
1330-20-7	Xylene (total)	ND	1.0

Surrogates:

Compound	% Recovery	Limits
Toluene d8	96.6	70-130
1,2-Dichloroethane d4	99.6	70-130
4 BFB	92.0	70-130

ND = Not Detected

NEW ENGLAND TESTING LABORATORY, IN

59 Greenhill Street West Warwick, RI 02893 1-888-863-8522

The parameter of the pa	PROJ. NO. PROJECT NAME/LOCATION				10/04
The Control of Contr	A ol	700 LANDFILL - ASSESSMENT	MOUNTORICG	CM 25/15/15/15/15/15/15/15/15/15/15/15/15/15	うりょう
Time Co 10 Concluded	CLIENT PRE	OPPCRATION		moma:	
## SAMPLE LD 10 10 10 10 10 10 10 1	NVOICE TO:	6 porecep, com	ωO	1 × 1	HEWARKS
X	TIME O	SAMPLE I.D.	œ'.	The state of the s	
DeterTine		DW-13		> ソ ソ	
Desertine Received by; (Signature) Desertine Laboratory Remarks: 3 Cooled II C					
Date/Time					
Date/Time Received by: (Signature) Date/Time Laboratory Remarks: 3					
DeterTime DeterTime Received by: (Signature) MS Cacol DeterTime Received by: (Signature) DeterTime DeterTime Received by: (Signature) Determine Received by: (Signature)					
Date/Time Received by, (Signature) Date/Time Laboratory Remarks: 3					
Date/Time Received by: (Signature) MS 1/2:22 Web Date/Time Received by: (Signature) Date/Time Received by: (Signature) Date/Time Received by: (Signature) Cooled CI Coole					
Date/Time					
Date/Time Received by: (Signature) Date/Time Laboratory Remarks: 3			at.		, , , , , , , , , , , , , , , , , , , ,
Date/Time					**
Date/Time Received by: (Signature) Date/Time Laboratory Remarks: 3 · Temp. received: Cooled Cl Cooled					mig. Z
Date/Time Received by: (Signature) Date/Time Laboratory Remarks: 3 · Temp. received: 3 · Temp. rec					Ja Walley
Date/Time Received by: (Signature) Date/Time Laboratory Remarks: 3 .					
Date/Time Received by: (Signature) MR 12 45 1245 Date/Time Received for Laboratory by: (Signature) C-8 1320 AN 10 An	Sampled by: (Signature)	Time //2:cZ	Date/Time	arks:	Special Instructions: List Specific Detection Limit Requirements:
Date/Time Received/or Laboratory by: (Signature) C-8	Relinquished by: [Bigmature)	Date/Time Received by: (Signature) W/S 27 4/5 FM	7	45	
	Relinquished by: (Signification)	20 A / Construction by: (Signature)		8	Timeround (Business Dave)

**Netlab supcontracts the following tests: Radiologicals, Radon, Asbestbs, UCMRs, Perchlorate, Bromate, Bromide, Sieve, Salmonella, Carbamates, CT ETPH

ATTACHMENT NO. 2 ANALYTICAL SUMMARY TABLES

TABLE 2 BACKGROUND WELL HISTORICAL RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-9 Concentration (Expressed in same units as Threshold Value)

																			,																
Parameter	Threshold Value	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEP '13	JUN '13	MAR '13 <u>I</u>	DEC '12	SEP '12	JUN '12	MAR '12	DEC '11	SEP '11	JUN '11	MAR '11	DEC '10	SEP '10	JUN '10	MAR '1
Antimony	0.006 mg/L ¹	ND	ND	0.0290	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	0.0160	0.2000	ND	ND	NT	ND	ND
Arsenic	0.010 mg/L ¹	ND	ND	ND	NT	NT	0.0030	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND .	ND	ND	ND	ND	NT	ND	0.0079
Barium	2 mg/L ¹	0.0090	0.0130	0.0410	NT	NT	0.0100	0.0060	NT	NT	0.0110	0.0110	NT	NT	0.0070	0.0420	NT	0.0100	0.0120	0.0200	NT	0.0150	0.0130	0.0160	NT	0.0110	0.0120	0.0070	0.0120	0.0080	0.0221	0.0230	NT	0.0460	0.0380
Beryllium	0.004 mg/L ¹	ND	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	0.0015	ND
Cadmium	0.005 mg/L ¹	ND	0.0020	0.3650	NT	NT	ND	ND	NT	NT	0.0010	ND	NT	NT	ND	0.0020	NT	ND	ND	0.0050	NT	0.0040	ND	0.0010	NT	ND	ND	ND	0.0020	ND	ND	ND	NT	ND	ND
Chromium	0.1 mg/L ¹	0.003	0.0070	0.0300	NT	NT	0.0040	ND	NT	NT	0.0050	0.0070	NT	NT	0.0060	0.0270	NT	0.0060	0.0070	0.0150	NT	0.0070	0.0070	0.0120	NT	0.0050	0.0080	0.0040	0.0020	ND	0.0079	0.0068	NT	0.0230	0.0270
Cobalt	0.73 mg/L ⁵	ND	0.0010	0.0020	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	0.0100	NT	ND	0.0010	0.0030	NT			0.0030	NT	ND	0.0020	ND	ND	ND	0.0019	0.0015	NT	0.0086	0.0110
Copper	1.3 mg/L ¹	ND	ND	0.0600	NT	NT	ND	ND	NT	NT	0.0020	ND	NT	NT	0.0020	0.0170	NT	ND	0.0060	0.0140	NT	0.0070		0.0060	NT	ND	0.0080	0.0010	0.0100	0.0400	0.0041	0.0043	NT	0.0200	0.0170
Lead Mercury	0.015 mg/L ¹ 0.002 mg/L ¹	0.001 ND	0.0020 ND	0.1820 ND	NT NT	NT NT	0.0020 ND	0.0060 ND	NT NT	NT NT	ND ND	0.0050 ND	NT NT	NT NT	0.0010 ND	0.0160 ND	NT NT	0.0060 ND	0.0030 ND	0.1020 ND	NT NT	0.0080 ND	0.0020 ND	0.0060 ND	NT NT	ND ND	0.0110 ND	0.0010 ND	0.0040 ND	0.0060 ND	ND ND	ND ND	NT NT	0.0140 ND	0.0024 ND
	0.002 mg/L ²				NT NT	NT NT	0.0040	ND ND	NT	NT.	0.0030	0.0030	NT NT	NT NT	0.0170	0.0180	NT NT	0.0030	0.0040	0.0090	NT.	0.0050		0.0070	NT NT	0.0030	0.0040		0.0080	0.0080	0.0046		NT		
Nickel Selenium	0.05 mg/L ¹	0.001 ND	0.0040 ND	0.0240 ND	NT NT	NT.	0.0040 ND	0.0100	NT	NT	ND	ND	NT	NT	0.0170 ND	0.0180 ND	NT	0.0030 ND	0.0040 ND	0.0090	NT	0.0050 ND	ND	ND	NT	ND	0.0040 ND	0.0020 ND	0.0100	0.0100	ND	0.0037 ND	NT.	0.0150 ND	0.0180 ND
Silver	0.1 mg/L ^{2,3}	ND	ND	ND ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND ND	ND	NT	ND	ND ND	ND ND	NT	ND	ND	ND	NT	ND ND	ND	ND ND	ND	0.0100	ND	ND	NT	ND ND	ND
Thallium	0.002 mg/L1	ND	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Tin	22 mg/L ⁵	ND	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	0.0080	0.1310	NT	ND	ND	ND	NT	ND	ND	ND	ND	0.0190	ND	ND	NT	ND	ND
Vanadium	0.26 mg/L ⁵	ND	0.0020	ND	NT	NT	ND	ND	NT	NT	0.0010	0.0020	NT	NT	ND	0.0140	NT	0.0020	0.0030	0.0070	NT		0.0020	0.0040	NT	ND	0.0010	ND	ND	ND	0.0034	0.0034	NT	0.0150	0.0110
Zinc	2 mg/L ^{2,1}	0.0090	0.0190	11.1000	NT	NT	0.0070	ND	NT	NT	0.0100	0.0050	NT	NT	ND	0.0410	NT	0.0110	0.0080	0.0170	NT	0.0210	0.0120	0.0160	NT	0.0150	0.0120	0.0090	0.0140	ND	0.0257	0.0190	NT	0.0330	0.0350
Acetone	610 µg/L°	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Acrylonitrile	0.039 µg/L"	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Benzene	5 μg/L¹	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Bromochloromethane	80 μg/L ²	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Bromodichloromethane (THM)	90 μg/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Bromoform Carbon disulfide	80 μg/L" 1000 μg/L"	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND
Carbon disulfide Carbon tetrachloride	1000 μg/L ³	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND
Carbon tetrachloride Chlorobenzene	5 μg/L 100 μg/L	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND
Chloroethane	4.6 μg/L ⁵	ND	ND	ND ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND ND	ND	NT	ND	ND ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND	ND
Chloroform (THM)	80 hB/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Chlorodibromomethane (THM)	80 µg/L1	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,2-Dibromo-3-chloropropane (DBC	0.2 µg/L1	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,2-Dibromoethane (EDB)	0.05 µg/L ³	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,2-Dichlorobenzene	600 µg/L"	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,4-Dichlorobenzene	75 μg/L ³	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,1-Dichloroethane	5 μg/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,2-Dichloroethane 1,1-Dichloroethylene	5 μg/L' 7 μg/L'	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND
cis-1.2-Dichloroethene	70 µg/L	ND	ND ND	ND ND	NT	NT	ND ND	NT	NT	NT	ND	ND	NT	NT	ND ND	ND	NT	ND ND	ND	ND	NT	ND	ND ND	ND	NT	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	NT	ND ND	ND
trans-1.2-Dichloroethene	100 µg/L	ND	ND	ND ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND	ND
1,2-Dichloropropane	5 na/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
cis-1,3-Dichloropropene	μg/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
trans-1,3-Dichloropropene	μg/L	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Ethylbenzene	700 µg/L1	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Methyl butyl ketone(2-Hexanone)	160 μg/L"	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Bromomethane	10 μg/L ²	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Chloromethane	30 μg/L ²	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Dibromomethane	61 μg/L*	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Methylene chloride	5 μg/L'	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT NT	NT	ND	ND	NT NT	ND	ND	ND	NT NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 μg/L²	ND	ND	ND ND	NT	NT	ND ND	NT	NT NT	NT	ND	ND		NT	ND	ND		ND	ND ND	ND		ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND	ND	ND	ND	NT	ND	ND
Methyl iodide 4-Methyl-2-pentanone	μg/L μg/L	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT NT	NT NT	NT NT	ND ND	ND ND	NT NT	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND
4-internyt-2-pentanone Styrene	100 µg/L	ND ND	ND ND	ND ND	NT NT	NT NT	ND ND	NT	NT	NT	ND ND	ND	NT	NT	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT.	ND ND	ND
1,1,1,2-Tetrachloroethane	70 µg/L²	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1.1.2.2-Tetrachloroethane	0.3 µg/L ²	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Tetrachloroethylene(PCE)	5 μg/L'	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	2.1	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Toluene	1000 µg/L'	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
1,1,2-Trichloroethane	5 μg/L ¹	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Trichloroethylene(TCE)	5 μg/L1	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
	2000 μg/L*	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Trichloroflouromethane		ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Trichloroflouromethane 1,2,3-Trichloropropane	40 μg/L²																NT	ND	ND	ND	NT	ND	ND	ND											
Trichloroflouromethane 1,2,3-Trichloropropane Vinyl acetate	410 µg/L ⁵	ND	ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND									NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Trichloroflouromethane 1,2,3-Trichloropropane Vinyl acetate Vinyl chloride	410 μg/L° 2 μg/L°	ND ND	ND ND	ND	NT	NT	ND	NT	NT	NT	ND	ND	NT	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND	ND
Trichloroflouromethane 1,2,3-Trichloropropane Vinyl acetate	410 µg/L ⁵	ND	ND																																

- Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Dinking Water Standards and Health Achiscores
 Threshold value given is the lifetime health achievor, as provided in the USEPA 2004 Edition of the Dinking Water Standards and Health Achiscores
 Threshold value given in the Secondary Dinking Water Standards and Health Achiscores
 Threshold value given in the Secondary Dinking Water Replantion (SSWR) as provided in the USEPA 2004 Edition of the Dinking Water Standards and Health Achiscores
 Threshold value given in the Dinking Water Achiscory as provided in the USEPA 2000 Edition of the Dinking Water Standards and Health Achiscores
 Threshold value given in the Previousing Assemble Class (PRIS) for users, as provided in the Osciblez 2000 USEPA Region PROS Entitle 2000 Update
 Constance concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limits.

 Nelsoner, the reporting limit his round was significantly higher ham previous reporting limit. Previous as significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limit his round was significantly higher ham previous reporting limits and historical reporting limits were reported as non-detect.

No threshold value has been provided for parameters not identified in the sources listed above
" " - One half of the laboratory detection limit "DL"
NT - Not Tested due to dry conditions at well.

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-7 Concentration (expressed in same units as Threshold Value)

	Threshold																						
Parameter	<u>Value</u>		MAR '18				MAR '16			DEC '14		SEP '13	MAR '13		MAR '12	JUN '11	MAR '11	SEP '10	JUN '10	SEP '09	JUN '07	SEP '05	JUN '05
Antimony	0.006 mg/L ¹	ND	ND	ND	ND	0.0070	ND	ND	ND	NT	ND	ND	ND	ND	ND	0.0250	ND ⁶	ND	ND	ND	ND	ND	ND
Arsenic Barium	0.01 mg/L ¹ 2 mg/L ¹	0.0100	ND 0.0380	ND 0.0350	ND 0.0330	ND 0.0380	0.0070	ND 0.0300	ND 0.0330	NT NT	ND 0.0310	ND 0.0200	ND 0.0310	ND 0.0260	ND 0.0280	ND 0.0350	0.0398	ND 0.0375	ND 0.0370	ND 0.0310	ND 0.0340	ND 0.0240	ND 0.0280
Barrum Bervilium	0.004 mg/L ¹	0.0280 ND	0.0380 ND	U.U35U	0.0330 ND	0.0380 ND	0.0390 ND	0.0300 ND	0.0330 ND	NT	0.0310 ND	0.0200 ND	0.0310 ND	0.0260 ND	0.0280 ND	0.0350 ND	0.0398 ND ⁶	0.0375 ND ⁶	0.0370 ND	0.0310 ND	0.0340 ND	0.0240 ND	0.0280 ND
Cadmium	0.005 mg/L ¹	ND	ND	ND	ND	0.0010	ND	0.0010	ND	NT	0.0010	ND	ND	0.0050	ND	ND	0.0012	0.0419	0.0410	ND	ND	ND	ND
Chromium	0.1 mg/L ¹	0.0040	0.0050	0.0050	0.0040	0.0060	ND	ND	ND	NT	ND	ND	ND	ND	0.0010	0.0080	ND	0.0054	0.0048	0.0530	ND	ND	ND
Cobalt	0.73 mg/L ⁵	0.0150	0.0190	0.0180	0.0180	0.0250	0.0280	0.0200	0.0250	NT	0.0220	0.0130	0.0250	0.0160	0.0200	0.0200	0.0353	0.0229	0.0250	0.0250	0.0200	0.0190	0.0220
Copper	1.3 mg/L ¹	ND	ND	0.0050	ND	0.0060	0.0060	0.0080	0.0250	NT	0.0180	0.0040	ND	0.0080	0.0040	0.0390	0.0056	0.2180	0.5000	0.0058	0.0098	ND	ND
Lead	0.015 mg/L ¹	ND	ND	ND	ND	ND	ND	0.0010	0.0050	NT	0.0060	0.0040	0.0020	0.0020	0.0040	0.0460	0.0033	0.0074	0.0060	0.0043	0.0042	ND	ND
Nickel	0.1 mg/L ²	0.0180	0.0210	0.0210	0.0190	0.0250	ND	0.0200	0.0240	NT	0.0190	0.0120	0.0220	0.0150	0.0020	0.0220	0.0302	0.0270	0.0280	0.0390	0.0240	0.0220	0.0370
Selenium	0.05 mg/L ¹	ND	0.0100	ND	0.0030	ND	0.1070	0.0070	0.1880	NT	0.1830	0.1410	0.1800	0.1920	0.2260	0.0340	ND	ND	ND	0.0120	0.0110	0.0140	ND
Silver	0.1 mg/L ²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0054	ND	ND	0.0035							
Thallium	0.002 mg/L ¹	ND	0.0003	ND	ND	ND	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	0.0032	ND	ND	0.0420	0.0440	ND	0.0140
Tin	22 mg/L ⁵	ND	NT	ND	0.0060	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Vanadium	0.26 mg/L ⁵	ND	NT	ND	ND	ND	ND	ND	0.0170	ND	0.0051	0.0072	0.0230	0.0240	ND	ND							
Zinc Mercury	5 mg/L ³ 0.002 mg/L ¹	0.0140 ND	0.0180 ND	0.0200 ND	0.0120 ND	0.0210 ND	0.0050 ND	0.0120 ND	0.0060 ND	0.0060 NT	190.0000 ND	ND ND	0.0150 ND	0.0100 ND	0.0130 ND	ND ND	0.0250 ND	0.0472 ND	0.0380 ND	0.0120 ND	0.0110 ND	0.0160 ND	0.0180 ND
Acetone	610 ug/l ⁵	ND	ND	ND	ND	5.8	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrate	0.039 ug/l ⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Benzene	5 ug/1	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Bromochloromethane	80 ug/l ²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Bromodichloromethane	90 ug/l1	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Bromoform	80 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Carbon disulfide	1000 ug/l ⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Bromomethane	10 ug/l ²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Carbon tetrachloride	5 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Chlorobenzene	100 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	1.0	2.0	ND	1.4	1.8	2.7	1.7	ND							
Chlorodibromomethane	80 ug/l1	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Chloroform	80 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Chloroethane	4.6 ug/l ⁵	ND	NT	ND	ND	ND	ND	ND	2.2	ND	1.3	1.6	1.5	3.8	ND	ND							
Chloromethane	30 ug/l ²	ND	ND	ND	ND ND	ND ND	ND	ND	ND ND	NT NT	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND
1,2-Dibromo-3-chloropropane 1,2-Dibromoethane	0.2 ug/l ¹ 0.05 ug/l ¹	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromomethane	61 ug/l ⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,2-Dichlorobenzene	600 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,4-Dichlorobenzene	75 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
trans-1.4-Dichlo-2-butene	ug/l	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,1-Dichloroethane	5 ug/l1	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,2-Dichloroethane	5 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
cis-1,2-Dichloroethylene	70 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Trans-1,2-Dichloroethylene	100 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,1-Dichloroethylene	7 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,2-Dichloropropane	5 ug/l1	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
cis-1,3-Dichloropropene	ug/l	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
trans-1,3-Dichloropropene	ug/l	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Methylene chloride	5 ug/l ¹ 70 ug/l ²	ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	NT	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	70 ug/l 0,3 ug/l ²	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND							
Tetrachloroethylene(PCE)	5 ug/l	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,1,1-Trichloroethane	200 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,1,2-Trichloroethane	5 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Trichloroethylene(TCE)	5 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Trichloroflouromethane	2000 ug/l ²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Vinyl chloride	2 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Ethylbenzene	700 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Toluene	1000 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Xylenes	10000 ug/l ¹	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Methyl butyl ketone(2-Hexanone)	160 ug/l ⁵	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Methyl tert-butyl ether (MTBE)	20 - 40 ug/l ⁴	3.56	6.8	5.9	5.36	10.3	8.8	ND	ND	NT	9.7	5.6	11.9	8.0	11.2	10.7	15.7	7.2	8.2	9.0	12.0	7.4	2.1
Methyl ethyl ketone(2-Butanone)	4000 ug/l ²	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Methyl iodide	ug/l	ND	NT	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
4-Methyl-2-pentanone	ug/l	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND 4.0	ND ND	NT NT	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND
Styrene	100 ug/l ¹ 40 ug/l ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	4.9 ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2,3-Trichloropropane Vinyl acetate	40 ug/l 410 ug/l ⁵	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND NT	ND ND	ND ND
Note: Low flow purging and sampling						.,,,	.,,,	.,,,	.,,,,		.,,,	.,,,,	.,,,,	.,,,,	.,,,	.,,,,	.,,,	.,,,,	.,,,	.,,,,			

= Exceeded MCL

TABLE 1 SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL UM-12 Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT 12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT 10	JUN '10
	<u>Value</u>																																	
Antimony	0.006 mg/L ¹ 0.010 mg/L ¹	0.001	ND ND	0.0210	ND ND	0.0010	0.0250	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	0.0060	ND ND	ND ND	ND ND	0.0100 ND	0.0600	ND ND	ND ND	ND	ND ND
Arsenic Barium	2 mg/L1	0.01	0.0170	0.0050	0.0260	0.0090	ND 0.0410	0.0260	0.0670	0.0060	0.0200	0.0260	0.0250	0.0190	ND 0.0600	0.0160	0.0210	0.0120	0.0140	0.0130	0.0150	0.0080	0.0130	ND 0.0180	ND 0.0170	0.0160	0.0160	0.0100	0.0280	0.0300	0.0113	0.0151	ND 0.0156	0.0094
Bendum	0.004 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND.	ND.	ND	ND	ND.	ND	ND	ND	ND	ND	ND ND	ND ⁶	ND	ND
Cadmium	0.005 mg/L1	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chromium	0.1 mg/L ¹	ND	ND	ND	0.0030	0.0010	0.0040	ND	0.0180	0.0130	ND	0.0020	ND	ND	ND	ND	0.0020	0.0020	0.0020	0.0010	0.0020	ND	0.0020	ND	ND	ND	0.0010	ND	ND	ND	ND ⁶	ND ⁶	0.0014	0.0025
Cobalt	0.73 mg/L ⁶	ND	ND	ND	0.0020	ND	0.0020	ND	0.0090	0.0080	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	0.0006	ND ⁶	ND
Copper	1.3 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	0.0200	0.0150	ND	0.0330	ND	ND	ND	ND	ND	0.0020	0.0030	0.0060	0.0020	0.0010	ND	ND	ND	ND	0.0010	ND	0.0100	0.0400	ND	0.0013	ND	0.0019
Lead	0.015 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	0.0150	0.0120	ND	ND	0.0020	ND	0.0020	0.0020	0.0030	0.0020	0.0020	0.0020	0.0010	0.0010	0.0020	0.0020	0.0020	ND	0.0020	ND	ND	ND	ND	ND	ND	0.0012
Mercury	0.002 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND	ND	ND
Nickel Selenium	0.1 mg/L ² 0.05 mg/L ¹	0.025 ND	0.0200 ND	0.0170 ND	0.0140 ND	0.0090 ND	0.0140 ND	0.0070 ND	0.0220 ND	0.0130 ND	0.0060	0.0080 ND	0.0040 ND	0.0060 ND	0.0040 ND	0.0040	0.0060 ND	0.0040	0.0040	0.0040	0.0050 ND	0.0020 ND	0.0040 ND	0.0050 ND	0.0040 ND	0.0030 ND	0.0050	0.0030	0.0070 ND	0.0110	0.0034 ND	0.0028 ND	0.0037 ND	0.0023 ND
Silver	0.1 mg/L ^{2,3}	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0350	ND	ND	ND	ND							
Thallum	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tin	22 mg/L ⁶	ND	ND	ND	ND	ND	ND	ND	0.0980	ND	0.1800	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vanadium	0.26 mg/L ⁵	ND	ND	ND	0.0030	ND	0.0040	ND	0.0200	0.0200	ND	ND	ND	ND	ND	ND	0.0020	ND	ND	ND	0.0020	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0057
Zinc	2 mg/L ^{2,3}	0.009	0.0070	0.0060	0.0130	0.0100	0.0220	ND	0.0500	0.0420	ND	ND	0.0050	0.0070	ND	ND	ND	ND	ND	ND	ND	0.0080	0.0100	ND	ND	0.0080	0.0070	0.0080	0.0160	ND	0.0170	0.0147	0.0151	0.0130
Acetone	610 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	8.3	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Acrylonitrile Renzene	0.039 μgl. ⁵ 5 μgl. ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
	80 µg/L ²	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
Bromochloromethane Bromodichloromethane (THM)	90 µg/L1	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND ND
Bromoform	80 µg/L ¹	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Carbon disulfide	1000 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon tetrachloride	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorobenzene	100 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroethane	4.6 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloroform	80 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80 μg/L1 0.2 μg/L1	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	0.05 µg/L1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.2-Dictionbenane (EDB)	600 µg/L ¹	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1.4-Dichlorobenzene	75 µgL1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,4-Dichloro-2-butene	μgL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane	5 µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	7 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70 µgL1 100 µgL1	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND ND
trans-1,2-Dichloroethene 1,2-Dichloropropane	100 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
cis-1,3-Dichloropropene	µg/L	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
trans-1,3-Dichloropropene	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylberizene	700 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 µg/L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	30 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane Methylene chloride	61 µgL ⁵ 5 µgL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl ethyl ketone(2-Butanone)	4000 µgL ²	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
Methyl iodide	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone	μgt	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100 H9 ^{fL¹}	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	70 H9L2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3 µg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 μg/L'	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene 1.1.1-Trichloroethane	1000 μgL' 200 μgL'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-Trichloroethane 1,1,2-Trichloroethane	200 μg/L 5 μg/L'	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,2-I ncrioroetnane Trichloroethylene(TCE)	5 HgC	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND
Trichloroflouromethane	2000 µ9 ^{£2}	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND							
1,2,3-Trichloropropane	40 µg/L²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate	410 µg/L ⁶	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 μg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 µg [£]	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-13 Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT '10
Antimony	Value 0.006 mg/L ¹	0.002	ND	0.0360	ND	0.0020	0.0080	ND	0.0110	ND	ND	ND	ND	ND	ND	ND	ND	0.0050	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0100	0.0200	ND	ND	ND
Arsenic	0.010 mg/L ¹	0.02	0.0070	ND	0.0050	0.0200	ND	ND	0.0100	ND	0.0190	0.0100	0.0110	0.0070	0.0040	0.0200	0.0070	ND		0.0160	0.0070	0.0080	0.0070	ND	ND	0.0060	0.0050	0.0050	0.0090	ND	0.0096	0.0094	0.0108
Barium	2 mg/L ¹	0.089	0.1150	0.0970	0.0460	0.0860	0.1080	0.0990	0.1830	0.0890	0.1700	0.0910	0.0870	0.0900	0.0890	0.1400	0.0870	0.0700	0.1180	0.0780	0.0650	0.0690	0.0750	0.0770	0.0760	0.0720	0.0760	0.0650	0.0760	0.0800	0.0912	0.0817	0.0807
Beryllium	0.004 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Cadmium	0.005 mg/L ¹	0.004	0.0040	ND	0.0020	0.0030	0.0050	ND	0.0290	ND	0.0050	0.0040	0.0040 ND	ND	ND	0.0020	ND	0.0020	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	0.0020	ND	0.0004	0.0004	0.0004
Chromium Cobalt	0.1 mg/L ¹ 0.73 mg/L ⁵	0.002	0.0020	0.0010	ND 0.0070	0.0040	0.0030	ND 0.0140	0.0330	0.0050	ND 0.0150	0.0040	0.0120	ND 0.0140	ND 0.0160	0.0090	ND 0.0110	0.0010	0.0050	ND 0.0100	ND 0.0090	ND 0.0130	ND 0.0120	ND ND	ND 0.0100	ND 0.0130	ND 0.0120	ND 0.0110	ND 0.0120	ND 0.0090	ND 0.0192	ND ⁶ 0.0156	ND 0.0138
Copper	1.3 mg/L ¹	ND.	ND.	ND	ND.	0.0100	ND.	ND.	0.0200	ND	0.0060	ND.	0.0020	ND.	0.0050	0.0730	0.0050	0.0050			0.0030	0.0050	ND	ND	ND	0.0060		0.0020	0.0090	0.0300	0.0028	0.0018	0.0027
Lead	0.015 mg/L ¹	ND	0.0020	ND	ND	0.0010	ND	0.0070	0.0350	0.0190	ND	ND	0.0020	0.0030	0.0030	0.0170	0.0040	0.0040	0.0070	0.0020	0.0020	0.0030	0.0020	0.0020	0.0020	ND	0.0020	ND	0.0040	0.0130	0.0015	ND	ND
Mercury	0.002 mg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND
Nickel	0.1 mg/L ²	0.011	0.0120	0.0290	0.0060 ND	0.0120	0.0350	0.0140 ND	0.0465	0.0130	0.0130	0.0120 ND	0.0120	0.0130	0.0130	0.0220	0.0110	0.0100		0.0100	0.0090	0.0100	0.0100 ND	0.0100	0.0100	0.0110	0.0100	0.0090	0.0110	0.0060	0.0141 ND	0.0127	0.0121
Selenium Silver	0.05 mg/L ¹ 0.1 mg/L ^{2,3}	ND ND	ND ND	ND ND	0.0020	ND ND	ND ND	ND	ND ND	ND ND	0.0390 ND	ND	ND ND	ND ND	0.0800	0.0210 ND	0.0590 ND	0.0120	0.0330	0.0700	0.0350 ND	0.0400	0.0010	ND ND	0.0700	0.0640 ND	0.0620	0.0710 ND	0.0690	0.0100	ND	ND ND	ND ND
Thallium	0.002 mg/L ¹	ND	0.0003	0.0003	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND
Tin	22 mg/L ⁵	ND	ND	ND	ND	ND	ND	ND	0.2800	0.1100	ND	0.0120	ND	ND	0.0010	ND	ND	ND	0.0170	0.0400	0.0090	0.0180	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND	ND
Vanadium	0.26 mg/L ⁵	ND	ND	0.0020	ND	ND	ND	0.0060	0.0390	0.0030	ND	ND	ND	ND	ND	0.0130	0.0020	ND	0.0010	0.0040	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	0.0200	ND	ND	ND
Zinc	2 mg/L ^{2,3}	0.012	0.0170 ND	0.0070	0.0070 ND	0.0200 ND	0.0170 ND	ND	0.1300	0.0130	0.0060	ND	0.0070 ND	ND ND	ND	0.0470 ND	ND	ND	0.0090	ND ND	ND	0.0110	0.0100	ND	ND	0.0230 ND	0.0050	0.0050 ND	0.0090 ND	ND	0.0178	0.0092 ND	0.0098 ND
Acetone Acrylonitrile	610 μg/L ⁵ 0.039 μg/L ⁵	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Benzene	5 ug/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ⁶	ND	ND
Bromochloromethane	80 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	90 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform	80 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Carbon disulfide Carbon tetrachloride	1000 μg/L ⁵ 5 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Chlorobenzene	100 µg/L ¹	4.72	5.40	ND	5.23	5.03	6.8	ND	5.5	2.5	6.6	7.4	6.3	6.1	7.4	8.1	ND	7.1	7.2	6.4	2.2	3.9	6.8	6.3	1.6	4.2	6.7	6.5	6.0	3.7	6.2	5.6	5.9
Chloroethane	4.6 μg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	ND	ND	ND	ND	1.3
Chloroform	80 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM)	80 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dibromo-3-chloropropane (DBCP) 1,2-Dibromoethane (EDB)	0.2 µg/L ¹ 0.05 µg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dichlorobenzene	600 ug/L1	ND	ND	ND	1.07	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,4-Dichlorobenzene	75 μg/L ¹	ND	ND	ND	1.11	ND	ND	ND	ND	ND	ND	ND	1.4	1.2	1.3	ND	ND	1.4	ND	ND	ND	ND	1.0	1.2	ND	ND	1.2	ND	1.4	1.0	ND ⁶	1.1	1.2
trans-1,4-Dichloro-2-butene	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	5 μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloroethane 1,1-Dichloroethylene	5 μg/L 7 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
cis-1.2-Dichloroethene	70 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND
trans-1,2-Dichloroethene	100 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,3-Dichloropropene	μg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,3-Dichloropropene Ethylbenzene	μg/L 700 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl butyl ketone(2-Hexanone)	160 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane	10 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chloromethane	30 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Dibromomethane	61 μg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methylene chloride	5 μg/L ¹ 4000 μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Methyl ethyl ketone(2-Butanone) Methyl iodide	4000 pg/L	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND
4-Methyl-2-pentanone	µg/L	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Styrene	100 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1,2-Tetrachloroethane	70 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane Tetrachloroethylene(PCE)	0.3 μg/L ² 5 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Toluene	1000 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,1-Trichloroethane	200 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2-Trichloroethane	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroethylene(TCE)	5 μg/L ¹ 2000 μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Trichloroflouromethane 1,2,3-Trichloropropane	2000 μg/L ² 40 μg/L ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Vinyl acetate	410 μg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl chloride	2 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Xylenes	10000 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	3.26	ND	ND	3.70	3.53	6.1	ND	3.6	2.6	4.1	4.9	3.2	5.2	4.5	2.9	ND	4.2	5.0	5.4	3.3	3.3	5.0	4.5	2.8	3.8	4.5	2.8	4.7	3.2	7.9	3.8	3.4
	= Excee																																
Threshold value given is the Max													navisories	3																			
Threshold value given is the lifeti																																	
Threshold value given is the Sec													and Healt	h Advisor	ies																		
Threshold value given is the Drin																																	
Threshold value given is the Prel																																	
Constituent concentration was re																																	
However, the reporting limit this								o be con	sistent wil	n histori	cal data,	only thos	e																				
constituents with concentrations	lower than histor	ical repor	ting limits	were rep	oorted as	non-dete	ct.																										
No threehold value has been provid	led for narameter	e not idea	tified in *	ha onum	ao liotad o	hous																											

No threshold value has been provided for parameters not identified in the sources listed above

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW'-1 Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold Value	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEP '13	JUN '13	MAR '13	DEC '12	SEP '12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC '10	SEPT '10	JUN '10
Antimony	0.006 mg/L1	ND	ND	0.0350	NT	0.0050	0.0410	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	0.0110	0.0170	ND	ND	NT	ND
Arsenic	0.010 mg/L1	0.01	ND	0.0030	NT	0.0200	0.0120	ND	NT	ND	0.0070	0.0050	0.0050	NT	ND	ND	NT	ND	ND	ND	NT	0.0060	ND	ND	NT	ND	ND	ND	0.0060	ND	0.0074	ND	NT	0.0070
Barium	2 mg/L ¹	0.155	0.2240	0.1990	NT	0.2400	0.2490	0.2290	NT	0.1380	0.1750	0.1980	0.1140	NT	0.2020	0.0910	NT	0.1570	0.1840	0.0790	NT	0.1440	0.1760	0.1370	NT	0.1750	0.1770	0.1470	0.1610	0.2100	0.2700	0.2030	NT	0.1900
Beryllium	0.004 mg/L ¹	ND	ND	ND	NT	0.0030	ND	ND	NT	0.0010	0.0010	ND	0.0010	NT	ND	ND	NT	ND	ND	0.0010	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND ^o	0.0010 ND ⁶	NT	ND
Cadmium	0.005 mg/L ¹	0.006	0.0050	0.0020	NT	0.0050	0.0060	ND ND	NT NT	ND 0.0110	0.0070	0.0080	0.0060	NT NT	ND 0.0050	ND 0.0050	NT NT	0.0050	0.0010	ND 0.0080	NT NT	ND ND	0.0020	ND ND	NT NT	ND ND	0.0040 ND	0.0030 ND	0.0030 ND	ND ND	ND.	0.0065	NT NT	ND 0.0018
Chromium Cobalt	0.73 mg/L ⁵	0.001	0.0060	0.0020	NT	0.0010	0.0020	0.0360	NT	0.0110	0.0030	0.0030	0.0170	NT	0.0050	0.0120	NT	0.0040	0.0010	0.0080	NT	0.0080	0.0050	0.0370	NT	0.0140	0.0100	0.0100	0.0160	0.0090	0.0457	0.0065	NT	0.0018
Copper	1.3 mg/L ¹	ND	0.0090	ND	NT	0.0100	ND	0.0200	NT	0.0010	0.0010	ND	0.0170	NT	0.0100	0.0090	NT	0.0070	0.0050	0.0200	NT	0.0030	0.0080	0.0100	NT	ND	ND	0.0010	0.0090	ND	0.0049	0.0140	NT	0.0050
Lead	0.015 mg/L ¹	ND	0.0060	ND	NT	0.0170	ND	ND	NT	0.0160	0.0070	ND	0.0090	NT	0.0050	0.0050	NT	0.0040	0.0040	0.0070	NT	0.0020	0.0050	0.0030	NT	0.0020	ND	0.0090	0.0020	ND	ND	0.0039	NT	0.0011
Mercury	0.002 mg/L ¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Nickel	0.1 mg/L ²	0.012	0.0220	0.0320	NT	0.0220	0.0470	0.0400	NT	0.0160	0.0160	0.0170	0.0200	NT	0.0270	0.0180	NT	0.0150	0.0230	0.0200	NT	0.0120	0.0200	0.0350	NT	0.0190	0.0170	0.0150	0.0180	0.0180	0.0460	0.0407	NT	0.0170
Selenium	0.05 mg/L ¹ 0.1 mg/L ^{2,3}	ND ND	ND	ND	NT	ND ND	ND	ND	NT	ND ND	ND ND	ND	ND	NT	0.0350	0.0140 ND	NT	ND	ND	0.0260	NT	ND	ND	ND	NT	0.0200	0.0310	0.0240	0.0300	ND	ND	ND	NT	ND
Silver Thallium	0.002 mg/L ¹	ND ND	ND 0.0003	ND 0.0003	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	0.0040	NT NT	0.0020 ND	ND ND	NT NT	0.0020 ND	0.0020 ND	ND ND	NT NT	ND ND	0.0020 ND	ND ND	NT NT	ND ND	0.0040 ND	ND 0.0010	0.0050 ND	ND ND	ND ND	ND ND	NT NT	ND ND
Tin	22 mg/L ⁶	ND ND	ND	ND	NT	ND	ND	ND	NT	0.0350	ND	0.0070	0.0010	NT	ND	ND	NT	ND ND	0.0220	0.0180	NT	0.0310	ND	ND	NT	ND	ND	ND	ND	ND	ND ⁶	ND	NT	ND ND
Vanadium	0.26 mg/L ⁶	ND	0.0070	0.0030	NT	0.0070	ND	ND	NT	0.0170	ND	ND	0.0140	NT	0.0080	0.0050	NT	0.0050	0.0020	0.0080	NT	0.0030	0.0060	ND	NT	ND	ND	ND	ND	0.0290	ND	0.0063	NT	0.0028
Zinc	2 mg/L ^{2,3}	0.031	0.0480	0.0160	NT	0.0600	0.0230	0.0300	NT	0.0280	0.0170	0.0140	0.0680	NT	0.0240	0.0190	NT	0.0070	0.0100	0.0310	NT	0.0120	0.0310	0.0210	NT	0.0160	0.0070	0.0070	0.0270	ND	0.0453	0.0570	NT	0.0094
Acetone	610 µg/L ⁵	ND	ND	ND	NT	ND	6.9	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	6.4	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Acrylonitrile	0.039 µg/L ⁵	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Benzene	5 μg/L ¹ 80 μg/L ²	2.77	ND	ND ND	NT	3.2 ND	4.1	ND ND	NT NT	2.7 ND	3.1 ND	3.9	2.0	NT NT	3.5 ND	ND ND	NT NT	3.3	3.6 ND	ND ND	NT NT	2.9 ND	4.3 ND	1.9 ND	NT NT	1.8	3.5 ND	3.6 ND	4.1 ND	2.1	3.7 ND	1.7 ND	NT	3.6 ND
Bromochloromethane Bromodichloromethane (THM)	90 µg/L1	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	NT	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
Bromoform	an ug/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Carbon disulfide	1000 μg/L ⁵	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Carbon tetrachloride	5 μg/L ¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Chlorobenzene	100 μg/L ¹	13.3	10.8	ND	NT	13.42	15.6	ND	NT	12.5	13.5	15.4	10.7	NT	16.7	5.3	NT	15.7	15.7	3.2	NT	11.3	19.1	8.0	NT	7.0	14.3	14.6	16.5	7.1	15.3	6.1	NT	14.0
Chloroethane	4.6 µg/L ³	ND	ND	ND	NT	2.27	ND	ND	NT	3.3	ND	2.0	1.5	NT	ND	ND	NT	ND	ND	ND	NT	ND	2.5	ND	NT	ND	1.4	2.4	ND	1.6	1.3	ND	NT	3.0
Chloroform Chlorodibromomethane (THM)	80 μg/L ¹	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
1.2-Dibromo-3-chloropropane (DBCP)	0.2 µg/L1	ND	ND	ND	NT	ND ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1.2-Dibromoethane (EDB)	0.05 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,2-Dichlorobenzene	600 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,4-Dichlorobenzene	75 μg/L ¹	2.62	ND	ND	NT	ND	ND	ND	NT	1.8	ND	ND	2.2	NT	3.3	ND	NT	3.4	ND	ND	NT	2.2	2.9	1.8	NT	1.4	2.7	2.2	3.2	1.8	2.7	1.9	NT	3.0
trans-1,4-Dichloro-2-butene	μg/L	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,1-Dichloroethane 1,2-Dichloroethane	5 μg/L 5 μg/L	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
1,1-Dichloroethylene	7 μg/L1	ND ND	ND	ND	NT	ND ND	ND ND	ND	NT	ND ND	ND	ND	ND	NT	ND ND	ND	NT	ND ND	ND	ND ND	NT	ND	ND ND	ND ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND
cis-1.2-Dichloroethene	70 µg/L¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
trans-1,2-Dichloroethene	100 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,2-Dichloropropane	5 μg/L ¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
cis-1,3-Dichloropropene	µg/L	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
trans-1,3-Dichloropropene	µg/L	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Ethylbenzene Methyl butyl ketone(2-Hexanone)	700 µg/L ¹	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
Bromomethane	10 µg/L ²	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND
Chipromethane	30 μg/L ²	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Dibromomethane	61 µg/L ⁶	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methylene chloride	5 μg/L ¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methyl ethyl ketone(2-Butanone)	4000 µg/L ²	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methyl iodide	μg/L	ND	ND ND	ND ND	NT	ND ND	ND	ND ND	NT	ND	ND ND	ND ND	ND ND	NT	ND	ND	NT	ND ND	ND ND	ND	NT	ND ND	ND ND	ND	NT	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	NT	ND ND
4-Methyl-2-pentanone Styrene	μg/L 100 μg/L ¹	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
1,1,1,2-Tetrachloroethane	70 μg/L ²	ND ND	ND	ND	NT	ND ND	ND ND	ND	NT	ND ND	ND	ND	ND	NT	ND ND	ND	NT	ND ND	ND	ND ND	NT	ND	ND ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND ND
1.1.2.2-Tetrachloroethane	0.3 µg/L ²	ND	ND	ND	NT	ND ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Tetrachloroethylene(PCE)	5 μg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Toluene	1000 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,1,1-Trichloroethane	200 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
1,1,2-Trichloroethane	5 μg/L¹	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Trichloroethylene(TCE) Trichloroflouromethane	5 μg/L ¹ 2000 μg/L ²	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	NT NT	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	NT NT	ND ND
1.2.3-Trichloropropane	2000 μg/L 40 μg/L ²	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND	ND ND	NT	ND ND	ND	NT	ND ND	ND ND	ND ND	NT	ND ND	ND ND	ND	NT	ND ND	ND	ND ND	ND ND	ND	ND	ND ND	NT	ND ND
Vinyl acetate	410 µg/L ⁵	ND	ND	ND	NT	ND ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Vinyl chloride	2 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Xylenes	10000 µg/L1	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	NT	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	NT	ND	ND	ND	ND	ND	ND	ND	NT	ND
Methyl tert-butyl ether (MTBE)	20 - 40 μg/L ⁴	6.23	9.4	ND	NT	7.08	16.5	ND	NT	6.7	7.7	12.3	6.9	NT	11.2	1.7	NT	6.6	14.8	4.3	NT	6.9	11.9	11.0	NT	7.5	8.4	6.6	12.4	7.0	16.3	12.3	NT	5.3

No threshold value has been provided for parameters not identified in the sources listed above NT = Not Tested due to dry conditions at well.

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OW-15 Concentration (Expressed in same units as Threshold Value)

Parameter	Threshold	JUN '18	MAR '18	DEC '17	SEP '17	JUN '17	MAR '17	DEC '16	SEP '16	JUN '16	MAR '16	DEC '15	SEP '15	JUN '15	MAR '15	DEC '14	SEP '14	JUN '14	MAR '14	DEC '13	SEPT '13	JUN '13	MAR '13	DEC '12	SEPT 12	JUN '12	MAR '12	DEC '11	SEPT '11	JUN '11	MAR '11	DEC 10	SEPT 10	JUN '10
	n one molt1	ND	ND	0.0300	ND		0.0340	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND					ND	ND		ND	
Antimony Arsenic	0.006 mg/L ¹	0.03	0.0200		0.0300	0.0020	0.0340 ND	ND ND	0.0700	0.0130		0.0170	ND ND	ND ND	0.0160	ND ND	0.0350	ND ND	ND ND	0.0050	0.0280	0.0130			0.0300	0.0060 ND		0.0060	0.0400 ND		0.0023	ND 0.0338	ND 0.0362	ND ND
Barium	2 mg/L1	0.03	0.1280	0.1240	0.0300	0.0890	0.1230	0.1560	0.3100	0.0600	0.0320	0.1840	0.1390	0.2230	0.1260	0.1350	0.1060	0.1810	0.1180	0.1340	0.0260	0.0130		0.1340	0.1010	0.2360	0.2350	0.1620	0.1930	ND	0.1890	0.1260	0.0362	0.2900
Beryllum	0.004 mg/L1	ND	ND	ND	ND	ND	ND	ND	0.0060	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0010	ND	0.0050	ND	ND	ND ⁶	ND								
Cadmium	0.005 mg/L ¹	0.010	0.0090	ND	0.0100	0.0050	0.0100	0.0050	0.0460		0.0100	0.0080	0.0070	ND	ND	ND	ND	0.0100	0.0010	ND	0.0010	ND	0.0040	ND	0.0020	ND	0.0060	0.0010	0.0040	ND	ND	ND ⁶	ND ⁶	ND
Chromium Cohalt	0.1 mg/L ¹ 0.73 mg/L ⁶	ND 0.012	ND 0.0100	ND 0.0090	0.0030	ND 0.0130	0.0020	ND ND	0.1180	0.0020	0.0010	0.0050	0.0020	0.0010	ND 0.0120	ND ND	0.0030	0.0030	0.0030 ND	ND 0.0010	ND 0.0140	ND 0.0100	ND 0.0060	ND 0.0020	0.0020	ND 0.0030	0.0020	ND 0.0090	ND 0.0020	ND ND	ND 0.0039	ND ⁶ 0.0185		0.0018
Copper	0.73 mg/L 13 mg/L	0.012 ND	0.0100 ND	0.0090 OIN	U.018U	0.0130 ND	0.0040 ND	ND ND	0.2300	U.0080	0.0180 ND	ND.	0.0040 ND	0.0020 ND	0.0120	ND ND	0.0190 ND	0.0020	0.0040	0.0010	0.0140	0.0100	0.0060	ND	ND	ND	0.0040	0.0090	0.0020	0.2400	0.0039 ND	0.0185		0.0017
Lead	0.015 mg/L ¹	ND	0.0020	ND	ND	0.0020	ND	0.0050	0.1350	0.0140	ND	ND	ND	0.0040	0.0020	0.0040	0.0110	0.0040	0.0020	0.0030	0.0020	0.0050		0.0030	0.0050	0.0020	0.0020	0.0010	0.0030	ND	ND	0.0025	0.0025	0.0013
Mercury	0.002 mg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.0070	ND	ND	ND	ND						
Nickel	0.1 mg/L ²	0.023	0.0200	0.0510	0.0350	0.0240	0.0520	0.0110	0.6610	0.0140	0.0290	0.0170	0.0100	0.0110	0.0180	0.0080	0.0330	0.0120	0.0070	0.0110	0.0230	0.0190	0.0150	ND	0.0270	0.0110	0.0130	0.0160	0.0090	0.0140	0.0086	0.0374	0.0396	0.0097
Selenium	0.05 mg/L ¹ 0.1 mg/L ²³	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	0.0220	ND 0.0020	ND 0.0150	ND 0.0030	ND 0.0030	0.0160	ND 0.0020	ND 0.0030	ND 0.0030	ND ND	0.0100	0.0120 ND	0.0180	0.0110 ND	0.0190	0.0400 ND	ND ND	ND ⁴	ND ⁶	ND ND
Thallum	0.002 mg/L ¹	ND ND	ND	ND	ND	ND	0.0020	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND.	ND	ND	ND	ND	ND	ND	ND
Tin	22 mg/L ⁶	ND	ND	ND	ND	ND	ND	ND	1.0600	ND	ND	0.0470	ND	ND	ND	ND	ND	ND	0.0270	0.0780	0.0210	0.0400	ND	ND ⁶	ND ⁴	ND ⁶	ND							
Vanadium	0.26 mg/L ⁵	ND	0.0060	0.0040	0.0110	ND	ND	0.0150	0.1560	0.0050	ND	ND	0.0020	ND	0.0040	0.0050	0.0060	0.0040	0.0030	0.0090	0.0030	0.0050	0.0040	0.0040	0.0030	0.0030	0.0020	0.0020	ND	0.0160	ND	0.0012	0.0023	0.0023
Zinc Acetone	2 mg/L ²³	0.032	0.0210	0.0100	0.0300	0.0200 ND	0.0140 ND	ND ND	0.9700	ND ND	0.0120	0.0150	0.0080	ND	ND ND	ND	ND	ND ND	ND 5.6	ND	ND	0.0150 ND	0.0200	ND ND	0.0280 ND	0.0090 ND	0.0120 ND	0.0060	0.0170	ND	0.0181	0.0147	0.0227 ND	ND ND
Acetone Acetonitrile	610 µgL ⁵ 0.039 µgL ⁵	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	6.7 ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	18.6 ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND
Benzene	5 μg/L ¹	1.67	ND	ND	3.59	2.83	ND	ND	3.4	3.2	2.1	3.2	1.7	2.0	2.8	2.8	3.6	2.2	2.1	2.8	3.4	2.7	2.8	2.5	3.4	3.1	2.7	3.2	3.5	2.1	1.9	3.3	3.5	2.5
Bromochloromethane	80 µg/L ²	ND	ND	ND	ND	ND	1.0	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromodichloromethane (THM)	90 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromoform Carbon disulfide	80 µgL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Carbon disumde Carbon tetrachloride	1000 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND	ND ND	ND	ND ND	ND ND	ND	ND ND	ND ND	ND ND	ND ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND ND	ND ND
Chlorobenzene	100 µgL1	12.72	17	15.2	18.19	21.26	17.4	21.5	16.0	16.8	17.7	18.3	21.0	21.1	19.7	26.9	19.0	27.0	25.0	32.5	18.9	14.3	20.0	29.0	15.5	12.4	16.9	15.8	25.0	11.8	23.1	19.8	16.9	12.0
Chloroethane	4.6 μg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	2.8	ND	1.9	ND	1.1	ND	ND	ND	ND	2.9	1.4														
Chloroform	80 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Chlorodibromomethane (THM) 1.2-Dibromo-3-chloropropage (DBCP)	80 µgL1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,2-Dibromoethane (EDB)	0.05 µg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichlorobenzene	600 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.1	1.0	1.3	ND	ND	ND	1.2	ND	ND	ND	ND						
1,4-Dichlorobenzene	75 μg/L ¹	ND	ND	ND	2.51	ND	1.6	ND	ND	2.1	ND	ND	3.4	2.9	3.0	ND	ND	3.4	ND	ND	2.1	2.3	2.6	3.2	1.9	1.9	2.3	1.5	3.1	2.1	2.9	2.4	2.4	2.1
trans-1,4-Dichloro-2-butene	μgiL	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1-Dichloroethane 1,2-Dichloroethane	5 μg/L 5 μg/L	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1-Dichloroethylene	7 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	70 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
trans-1,2-Dichloroethene	100 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2-Dichloropropane cis-1 3-Dichloropropene	5 µgL' ugL	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
trans-1.3-Dichloropropene	ugL	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Ethylberizene	700 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl butyl ketone(2-Hexanone)	160 µg/L ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Bromomethane Chloromethane	10 μgl ² 30 μgl ²	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Dibromomethane	30 μg/L 61 μg/L ⁶	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND								
Methylene chloride	5 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl ethyl ketone(2-Butanone)	4000 µgL ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Methyl iodide	μgL	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND
4-Methyl-2-pentanone Styrene	μgL 100 μgL ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1.1.1.2-Tetrachloroethane	70 ugl ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,1,2,2-Tetrachloroethane	0.3 µg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Tetrachloroethylene(PCE)	5 μg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Toluene 1.1.1-Trichloroethane	1000 µgL1 200 µgL1	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
1,1,1-I nonioroetnane 1 1 2-Trichlomethane	5 ugl.	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND	ND ND	ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND								
Trichloroethylene(TCE)	5 μg/L ¹	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Trichloroflouromethane	2000 μg/L ²	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
1,2,3-Trichloropropane	40 μgL ² 410 μgL ⁵	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Vinyl acetate Vinyl chloride	410 μg/L ¹ 2 μg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND	ND ND
Xylenes	10000 µg/L1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	1.6	3.3	ND	ND	2.2	5.4	ND	ND	3.1	ND	6.1	2.0	3.9	ND	ND	6.5
Methyl tert-butyl ether (MTBE)	20 - 40 µg [®] L ⁴	6.61	ND	6.3	7.52	7.69	8.5	ND	7.9	7.9	6.8	7.8	6.7	12.2	7.1	4.2	6.0	9.4	5.4	7.7	8.3	10.3	6.1	3.9	8.8	9.5	9.5	5.5	7.5	7.1	7.9	6.1	7.6	5.7
	= Exce	eded MCL																																
 Threshold value given is the Ma 	ximum Contamina	ant Level (f	MCL) as p	rovided in	the USE	PA 2004	Edition of	the Drin	king Wate	r Standar	ds and He	alth Adv	isories																					
Threshold value given is the lifet	time health adviso	ory as provi	ided in the	e USEPA	2004 Edit	ion of the	Drinking	Water S	andards a	nd Healt	h Advisori	es																						
Threshold value given is the Sec													Health Ad	lvisories																				
4. Threshold value given is the Drir	nking Water Advi	sory as pro	wided in t	he USEP	A 2004 Ed	fition of th	ne Drinkin	g Water	Standards	and Hea	Ith Adviso	ries																						
5. Threshold value given is the Pre	liminary Remedia	al Goal (PR	(G) for tap	water, a	s provided	in the O	ctober 20	02 USEP	'A Region	9 PRGs	Table 2000	2 Update																						
Constituent concentration was re	eported above its	laboratory	method d	letection li	imit, but lo	wer than	its labora	tory repo	rting limit	and histo	rical repor	ting limit	t.																					
However, the reporting limit this							refore, to	be consi	stent with	nistorical	data, only	those																						
constituents with concentrations	lower than histori	ical reporti	ng limits v	vere repo	rted as no	n-detect.																												

TABLE 1 (CONT.) SUMMARY OF GROUNDWATER MONITORING RESULTS APPENDIX A - CONSTITUENTS FOR DETECTION MONITORING MONITORING WELL OWI-6 Concentration (Expressed in same units as Threshold Value)

Anteners	Parameter	Va	shold	JUN '18	MAR '18	NOV '17
Banum	Antimony					
Beryslam	Arsenic			0.01		
Cammun 0.005 mVL 1 NO NO NO NO NO CO CO CO CO 0.005						
Content		0.004	mg/L1			
Content		0.005	mg/L1			
Capper 1.3 mg/L No.		0.1	mg/L			
Lead 0.015 mg/L* NM						
Mercary						
Notari Selection Continue						
Selection		0.002	mgr.			
Silver						
Thallam 0.002 mVL mVL 0.002 mVL NO 0.002 MVL Townshim 2.2 mVL 1.00 mVL NO NO NO Closer 2.2 mVL 1.00 mVL NO NO NO Acrotrone 610 mVL 1.00 mVL NO NO NO Acrotrone 610 mVL 1.00 mVL NO NO NO Acrotrone 610 mVL NO NO NO NO Bermadrom 100 mVL NO NO NO NO Carbon disalfide 1000 mVL NO NO NO NO Carbon disalfide 100 mVL NO NO NO NO Chrosomera 4.4 mVL NO NO NO NO Chrosomera (194) NO NO NO NO Chrosomera (194) NO NO NO NO NO Chrosomera (194) NO NO NO NO NO						
Time 22 molt 1 molt NO NO NO Vandaria 0.28 molt 2 molt NO NO NO 2 molt 2 molt 0.002 molt 0.002 molt 0.002 molt 0.002 molt Activation 0.003 molt NO NO NO NO Berease 5 molt 1 molt NO NO NO NO Berease (Arginetine 10 molt 2 molt NO NO NO NO Berease (Arginetine 10 molt 2 molt NO NO NO NO Carbon standards 10 molt 2 molt NO NO NO NO Carbon standards 4.0 molt 2 molt NO NO NO NO Christopherane 4.0 molt 2 molt NO NO NO NO Christopherane 4.0 molt 2 molt NO NO NO NO 1.0 molt 2 molt 2 molt NO NO NO NO NO NO 1.2 british contente 5 molt 2 molt NO NO		0.1	mol 1			
Vandam 0.26 mg/L² NO NO NO NO AND		22	mol 5			
Zero 2 mol.** 2002 0.024 0.024 Actions 610 mol.** NO	Vanadum	0.26	mol 5		ND	ND
Acetone 610 ust ¹ ND ND ND Acetone 1010 ust ¹ ND ND ND Bereiers 1029 μ ² ND ND ND ND Berondchizerenhare (1140) 10 ust ¹ ND ND ND Berondchizerenhare (1140) 10 ust ¹ ND ND ND Carbon standbrids 1020 ust ² ND ND ND ND Carbon standbrids 1030 ust ² ND		2	mal ²³	0.022	0.024	0.0210
Acyptomish 0.039 (spl.**) ND ND ND Bernerer 5 (spl.**) ND ND ND Bernerer 5 (spl.**) ND ND ND Bernerer 5 (spl.**) ND ND ND Bernerer 6 (spl.**) ND ND ND Bernerer 10 (spl.**) ND ND ND Chron destaction 10 (spl.**) ND ND ND Chron-there 4.6 (spl.**) ND ND ND Chron-there 4.6 (spl.**) ND ND ND Chron-there 1.6 (spl.**) ND ND ND Chron-there 1.6 (spl.**) ND ND ND Chron-there 1.6 (spl.**) ND ND ND Chron-there 1.7 (spl.**) ND ND ND Lock Chron-there 1.7 (spl.**) ND ND ND Lock Chron-there 1.7 (spl.**) ND ND N	Acetone	610	ugt.5	ND	ND	ND
Beranes	Acrylonitrile	0.039	µg€.5	ND	ND	ND
Bernordschorenhere (THM)	Benzene	5	μg/L1	ND	ND	ND
Bernordschorenhere (THM)	Bromochloromethane	80	μgt.2	ND	ND	ND
Carbon standische Christon standische Sind- Christon standische Sind- Christon standische Sind-	Bromodichloromethane (THM)	90	μg/L ¹	ND	ND	ND
Carbon tenscherise 5 sud-1 ND		80	µg€¹			
Chrostomere		1000	µgt.5			
Chocombrane						
Cheorism		100	µgt.1			
Choodbornomehane (THM) 00 upt. NO		4.6	ngt."			
1-2-Disconseigner (BEDF) 0.2 splt NO						
1.3 Disconnectance (EIDI) 0.05 ip\$1. NO						
13-Delichoelsreeme						
1.4 Delicholenzene 75 usl. NO		0.05	μg/L.			
Years I, A. Cockhoro-Subaren 195 ^L NO NO NO 1. De Chicocherian 5 195 ^L NO						
1-1-0-bit 1-1-		75				
1.5 Delictorellame						
1.1-Deficient/prime 7 195 ¹ ND N						
co. 12 - Dichizondemo 70 yelf* ND ND ND stars 1- 3 - Dichizondemo 100 yelf* ND	1.1-Dichloroethylene			ND	ND	ND
Variet J. Colorbiorenteme 100 jeg ¹² ND ND ND 0x 1-2 Dicthicropropere 5 jeg ¹² ND ND </td <td></td> <td>70</td> <td>μgt.1</td> <td>ND</td> <td>ND</td> <td>ND</td>		70	μgt.1	ND	ND	ND
cis 1-3 Debriosprogene spl. ND ND ND Einylastrean 190 L ND ND ND Einylastrean 100 ppl. ND	trans-1,2-Dichloroethene	100	μgt.1	ND	ND	ND
trans-1,3 Chickerprepare lip5 ND ND <th< td=""><td></td><td>5</td><td>μg/L1</td><td>ND</td><td>ND</td><td>ND</td></th<>		5	μg/L1	ND	ND	ND
Einjaherener	cis-1,3-Dichloropropene		μgt	ND	ND	ND
Memby Hardy Researce 140 196 ¹² NO			μgiL			
Bornomekane 10 ye\$t		700	μg/L1			
Chromershare 30 jegl* No						
Determination		10	μg/L*			
Methylene choices						
Methyl delyk lexency Eutenouse 4000 rg6\frac{1}{2} ND		61	µg/L			
Methyl Loide			pgr.			
4-Methys-perturors 19 ¹ L ND ND ND Syree 100 set ¹ L ND ND ND 1.11,21-Transformehren 70 set ¹ L ND ND ND 1.11,22-Transformehren 0.3 set ² L ND ND ND Franctionschipten(PCE) 5 set ² L ND ND ND 1.1,21-Transformehren 5 set ² L ND ND ND 1.1,22-Transformehren 5 set ² L ND ND ND Transformehren 200 set ² L ND ND ND Transformehren 40 set ² L ND ND ND Voly accesse 40 set ² L ND ND ND Voly accesse 40 set ² L ND ND ND Weters 80 set ² L ND ND ND		4000				
Syrees 100 set. NO ND						
11,12.7=irranthromethous 70 ust.		400				
1.1.2.3 "Emerishonenhow 0.3 spl-1" ND ND ND ND Teachers of the property of the		70	ugh.			
Teacs-Dross/pleary(PCE) 5 spt. NO		0.3	unf 2			
Totame 200 pgf [±] ND ND ND 1.1,3 friedkonsthame 200 pgf [±] ND ND ND 1.1,2 friedkonsthame 5 pgf [±] ND ND ND 1.1,2 friedkonsthame 5 pgf [±] ND ND ND Trickinorshyming 40 pgf [±] ND ND ND Trickinorshyming 40 pgf [±] ND ND ND Trickinorshyming 40 pgf [±] ND ND ND Wind forbits 2 pgf [±] ND ND ND Wind forbits 2 pgf [±] ND ND ND Winders 1000 pgf [±] ND ND ND						
1.1,1-1/16/broenbane 200 ip\$\frac{1}{2}\frac{1}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\fra						
1.1.2.Tinchioroethane 5 salc. ND ND ND Trichtorothyme(TCE) 5 salc. ND ND ND Trichtorothyme(TCE) 5 salc. ND ND ND Trichtorothymenthane 2000 salc. ND		200	µg€¹			
Trichteroemlysere (TCE) 5 µgL ¹ ND ND ND Trichterofuncembane 2000 µgL ² ND ND ND ND 1,2.3-Trichteroprepane 40 µgL ² ND ND ND ND Vinyl acetate 410 µgL ² ND ND ND ND Vinyl chloride 2 µgL ¹ ND ND ND ND Vigenes 10000 µgL ² ND ND ND ND		5	µgt.1			
Trichhordouromethane 2000 μgL² ND ND ND 1,2,3-Trichforopropane 40 μgL² ND ND ND Viny (acetate 410 μgL² ND ND ND Viny (chloride 2 μgL² ND ND ND Xybrenes 10000 μgL² ND ND ND		5	μgt.1			ND
1.2,3-Trichforopropane 40 µgL² ND ND ND Vinyl acetate 410 µgL² ND ND ND Vinyl choride 2 µgL¹ ND ND ND Xytenes 10000 µgL¹ ND ND ND		2000	µgL ²	ND	ND	ND
Viryl chloride 2 μg L ¹ ND ND ND Xylenes 10000 μg L ¹ ND ND ND	1,2,3-Trichloropropane	40	µgL ²	ND	ND	ND
Xylenes 10000 µg ¹ L ¹ ND ND ND						ND
Xylenes 10000 μgl [±] ND ND ND Methyl tert-butyl ether (MTBE) 20 - 40 μgl [±] 6.53 7.8 4.6						
Methyl tert-butyl ether (MTBE) 20 - 40 µg ^{6,4} 6.53 7.8 4.6		10000	µg/L1			
	Methyl tert-butyl ether (MTBE)	20 - 40	μgt.4		7.8	4.6

- Xyeres

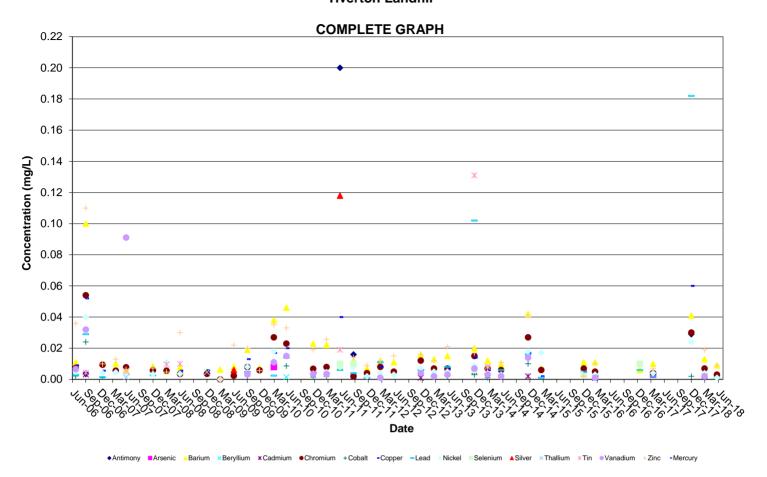
 10000 rg/s². ND ND ND

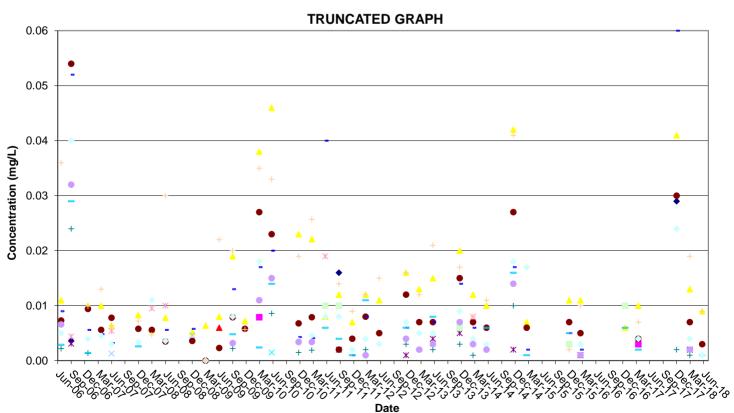
 Methyl fart body et ber (MTBE) 29-40 st². 62.5 7.8 4.6

 1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

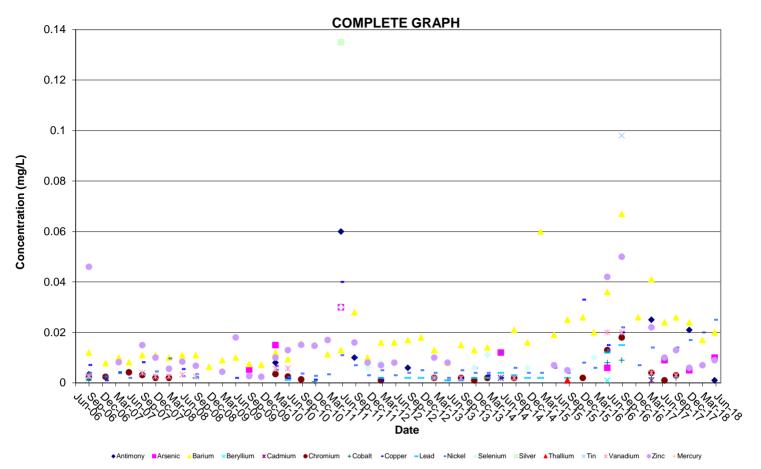
 2. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

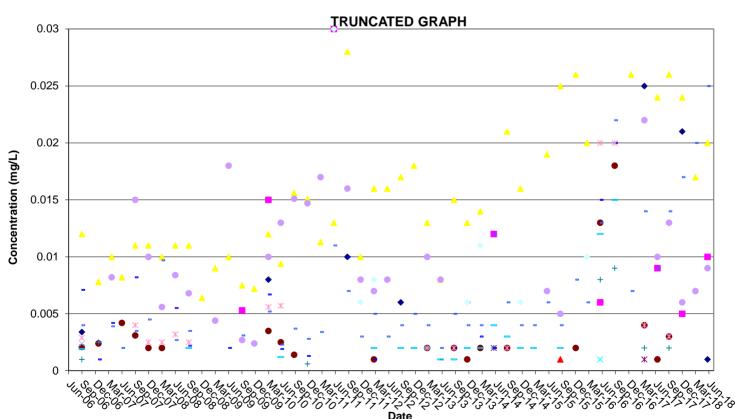
 3. Threshold value given is the Secondary Prinking Water Pacisions (DSWPR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

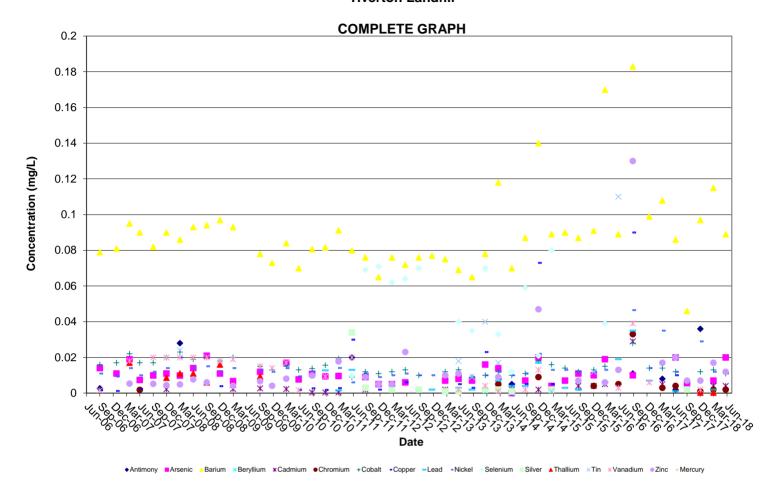

 4. Threshold value given is the Poliminary Parendard Goal (PRG) for tye water, an provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

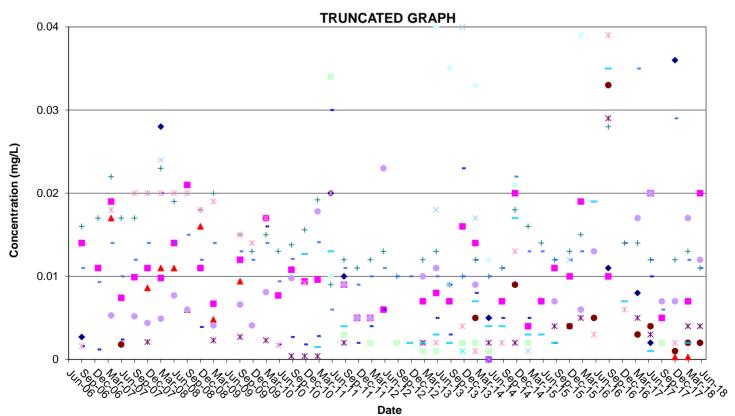

 5. Threshold value given is the Proliminary Parendard Goal (PRG) for tye water, an provided in the CUSEPA 2002 USEPA Region PRGC Table 2012 Update

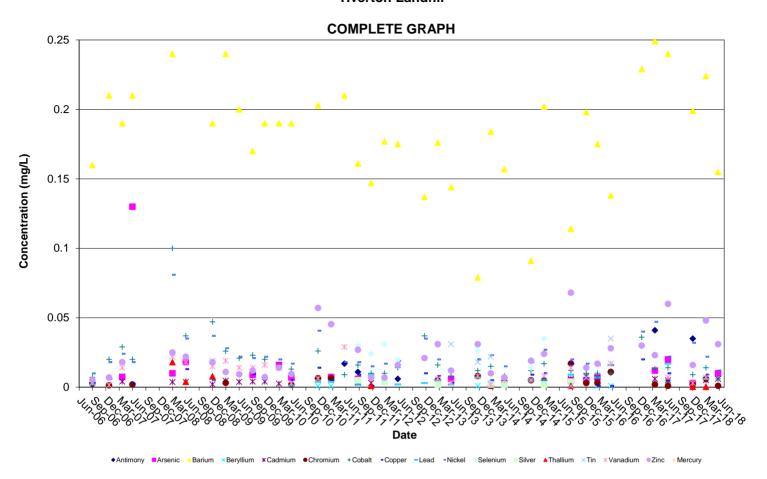
 6. Constituent concentration was reported above its blocratory method detection limit, but lower than its absoratory reporting limit is north as significantly higher than previous reporting limits. Therefore, to be consistent with Instorical ddat, only those constituents with concentrations lower than Instorical reporting limits are were reported as non-detect.

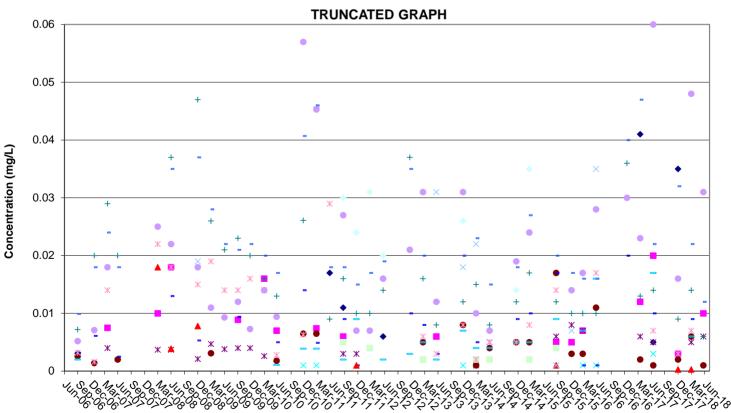

<u>ATTACHMENT NO. 3</u> HISTORICAL DETECTED METALS GRAPHS

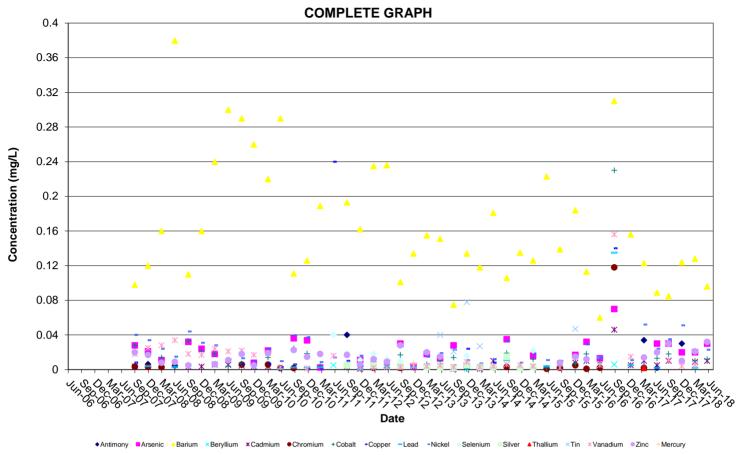

Detected Appendix A Metals in OW-9 Tiverton Landfill

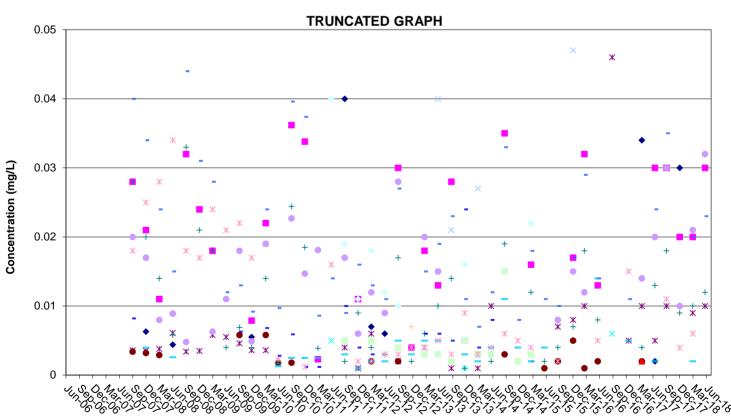



Detected Appendix A Metals in OW-12 Tiverton Landfill

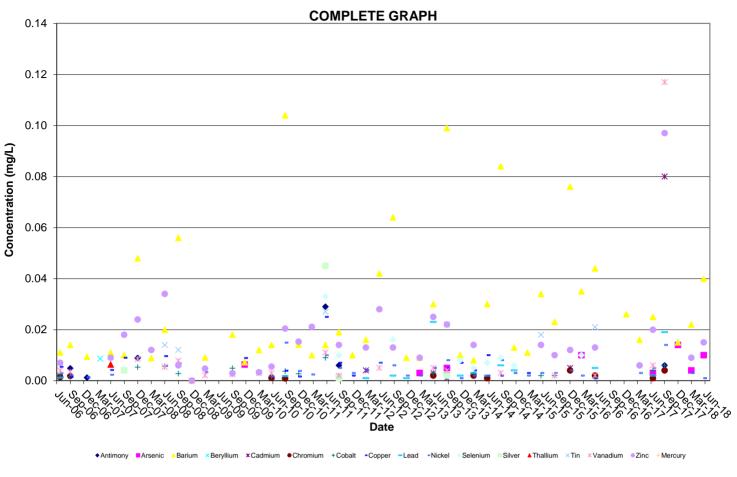


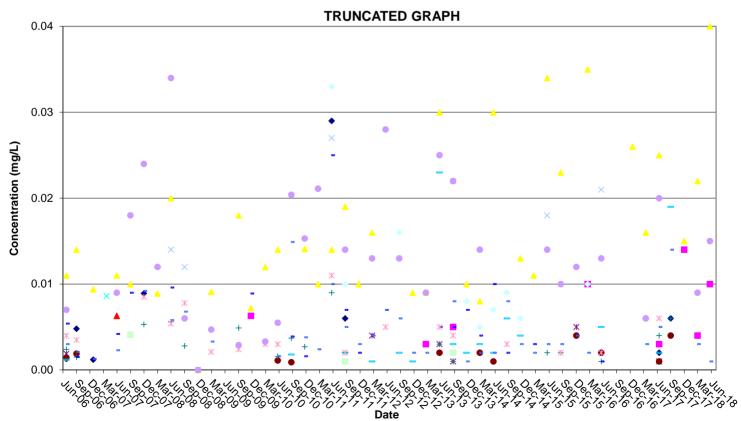

Detected Appendix A Metals in OW-13 Tiverton Landfill

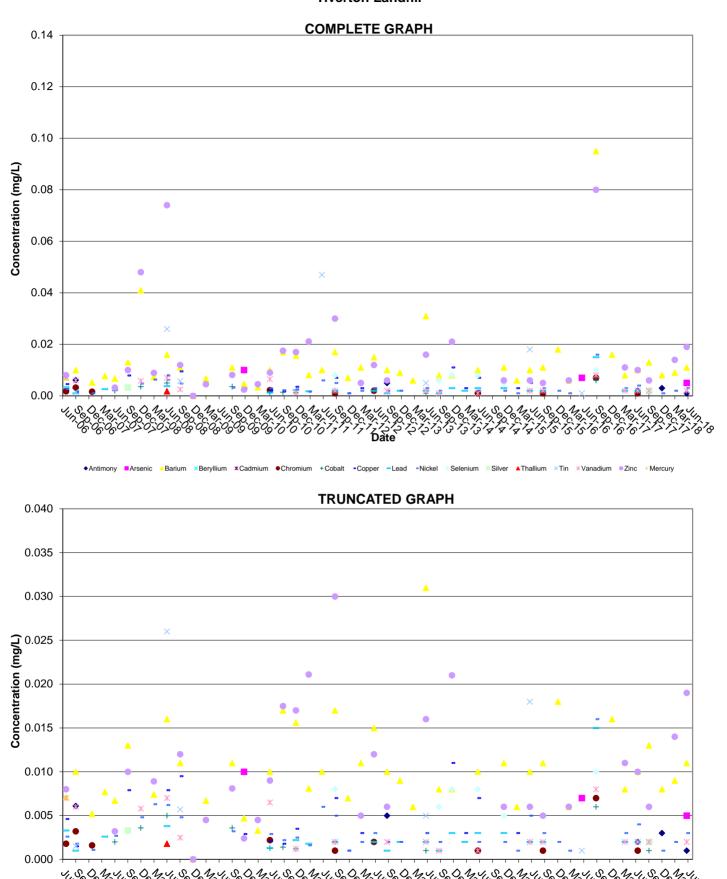

Detected Appendix A Metals in OW-14 Tiverton Landfill



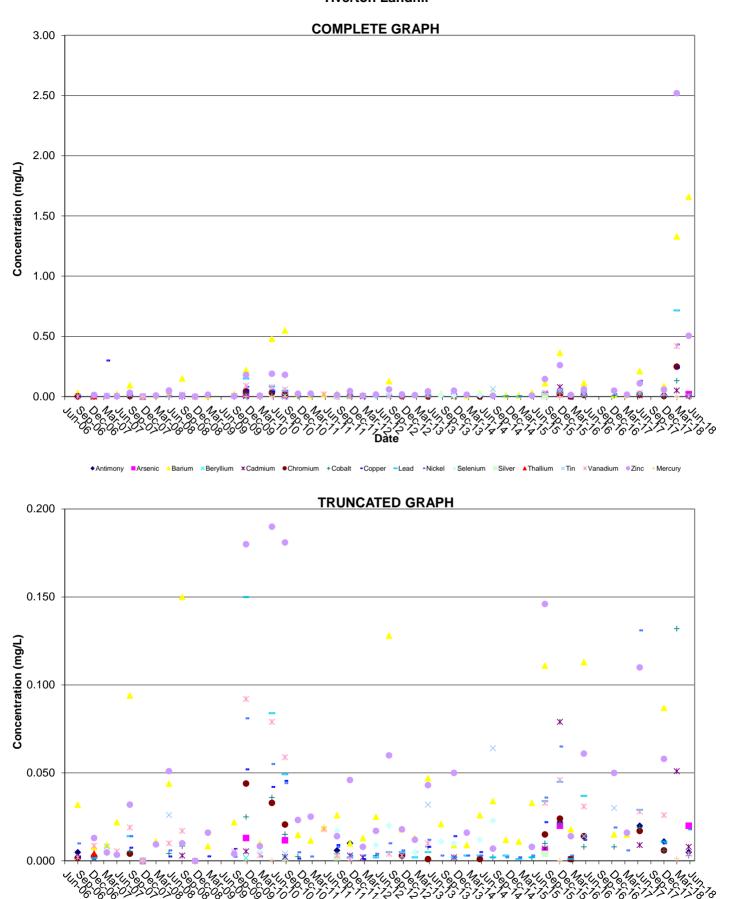
Date


Detected Appendix A Metals in OW-15 Tiverton Landfill




Date

Detected Appendix A Metals at Surface Water Sampling Location SW-1 Tiverton Landfill



Detected Appendix A Metals at Surface Water Sampling Location SW-2 Tiverton Landfill

Detected Appendix A Metals at Surface Water Sampling Location SW-3 Tiverton Landfill

<u>ATTACHMENT NO. 4</u> TOLERANCE INTERVAL STATISTICAL EVALUATION

TABLE 3 SUMMARY OF GROUNDWATER MONITORING RESULTS - TOLERANCE INTERVAL COMPARISON JUN 2018 - SAMPLE ROUND

Concentration (units as specified for Threshold Value)

			Ooncon	ation (anits t	из эрссиис	a loi Tillesilola Value)				
		О	W-9			Background Well		Compliance wells	3	
	_		ce Limit *		shold	014.0	0111.40	aw 4a		014.45
	<u>Parameter</u>	TL=A\	/G+K*S	Va	ilue	OW-9	OW-12	OW-13	OW-14	OW-15
METALS	Antimony	0.0290	mg/L	0.006	mg/L1	ND	0.0010	0.0020	ND	ND
	Arsenic	0.0030	mg/L	0.010	mg/L1	ND	0.0100	0.0200	0.0100	0.0300
	Barium	0.0491	mg/L	2	mg/L1	0.0090	0.0200	0.0890	0.1550	0.0960
	Beryllium	0.0005	mg/L		mg/L ¹	ND	ND	ND	ND	ND
	Cadmium	0.3650	mg/L		mg/L ¹	ND	ND	0.0040	0.0060	0.0100
	Chromium	0.0364	mg/L		mg/L ¹	0.0030	ND	0.0020	0.0010	ND
	Cobalt	0.0020	mg/L		mg/L ⁵	ND	ND	0.0110	0.0060	0.0120
	Copper	0.0600	mg/L		mg/L ¹	ND	ND	ND	ND	ND
	Lead	0.2245	mg/L		mg/L¹	0.0010	ND	ND	ND	ND
	Mercury	0.0001	mg/L		mg/L¹	ND	ND	ND	ND	ND
	Nickel	0.0337	mg/L		mg/L ² mg/L ¹	0.0010	0.0250	0.0110	0.0120	0.0230
	Selenium	0.0100	mg/L		mg/L ^{2,3}	ND	ND	ND	ND	ND
	Silver Thallium	0.0005	mg/L		mg/L ¹	ND ND	ND ND	ND ND	ND ND	ND ND
		0.0005	mg/L		mg/L ⁵					
	Tin Vanadium	0.0025	mg/L		mg/L°	ND ND	ND ND	ND ND	ND ND	ND ND
	Zinc	0.0020 13.7203	mg/L		mg/L ^{2,3}	0.0090	0.0090	0.0120	0.0310	0.0320
VOC'S	Acetone	13.7203	mg/L		μg/L°	0.0090	0.0090	0.0120	0.0310	0.0320
<u>voc s</u>	Acrylonitrile			0.039						
	Benzene				μg/L'					
	Bromochloromethane				μg/L ²					
	Bromodichloromethane (THM)				μg/L'					
	Bromoform				μg/L¹					
	Carbon disulfide				μg/L°					
	Carbon tetrachloride				μg/L¹					
	Chlorobenzene			100	μg/L'					
	Chloroethane			4.6	μg/L°					
	Chloroform			80	μg/L¹					
	Chlorodibromomethane (THM)			80	μg/L'					
	1,2-Dibromo-3-chloropropane (DBCP)				μg/L'					
	1,2-Dibromoethane (EDB)				μg/L'					
	1,2-Dichlorobenzene				μg/L'					
	1,4-Dichlorobenzene			75	μg/L'					
	trans-1,4-Dichloro-2-butene				μg/L					
	1,1 -Dichloroethane				μg/L					
	1,2-Dichloroethane				μg/L'					
	1,1-Dichloroethylene				μg/L'					
	cis-1,2-Dichloroethene				μg/L'					
	trans-1,2-Dichloroethene				μg/L'					
	1,2-Dichloropropane			5	μg/L' μg/L					
	cis-1,3-Dichloropropene trans-1,3-Dichloropropene				μg/L μg/L					
	Ethylbenzene			700	μg/L'					
	Methyl butyl ketone(2-Hexanone)				μg/L°					
	Bromomethane				μg/L ²					
	Chloromethane				μg/L ²					
	Dibromomethane				μg/L°					
	Methylene chloride				μg/L'					
	Methyl ethyl ketone(2-Butanone)				μg/L ²					
	Methyl iodide				μg/L					
	4-Methyl-2-pentanone				μg/L					
	Styrene			100	μg/L'					
	1,1,1,2-Tetrachloroethane				μg/L²					
	1,1,2,2-Tetrachloroethane			0.3	μg/L²					
	Tetrachloroethylene(PCE)				μg/L¹					
	Toluene				μg/L'					
	1,1,1-Trichloroethane				μg/L '					
	1,1,2-Trichloroethane				μg/L¹					
	Trichloroethylene(TCE)				μg/L¹					
	Trichloroflouromethane				μg/L ⁻					
	1,2,3-Trichloropropane				μg/L²					
	Vinyl acetate				μg/L°					
	Vinyl chloride				μg/L¹					
	Xylenes			10000						
	Methyl tert-butyl ether (MTBE)	(1401)		20 - 40	μg/L	.				

Methyl tert-butyl ether (MTBE) 20 - 40 µg/L*

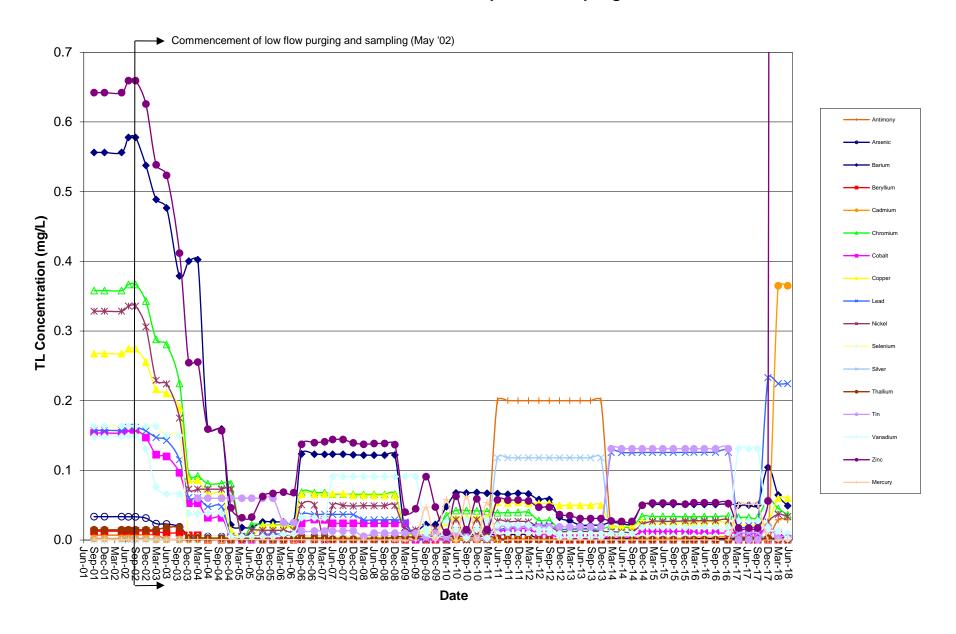
1. Threshold value given is the Maximum Contaminant Level (MCL) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

No threshold value has been provided for parameters not identified in the sources listed above

" " = Exceedance of TL
ND = Not Detected

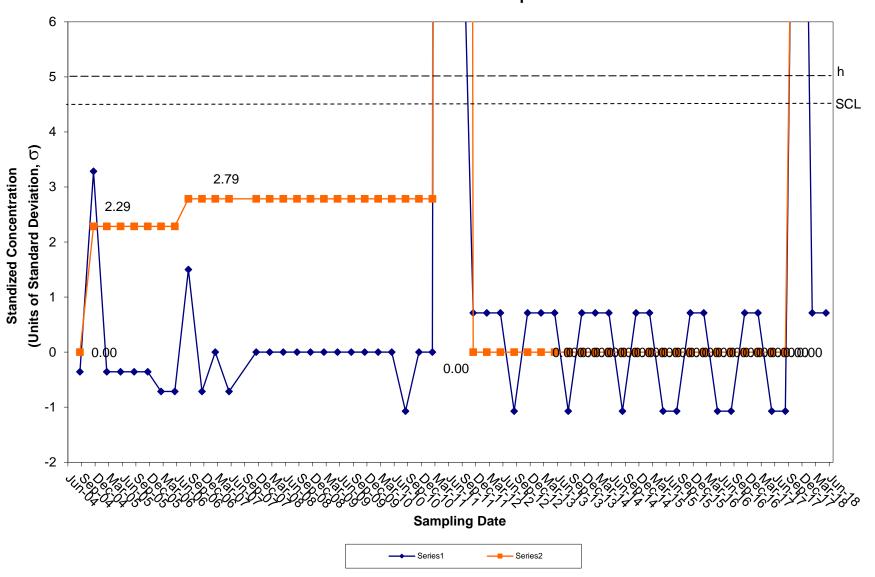
Tolerance Limit (TL) constructed from background (upgradient) well data from OW-9.

^{2.} Threshold value given is the lifetime health advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

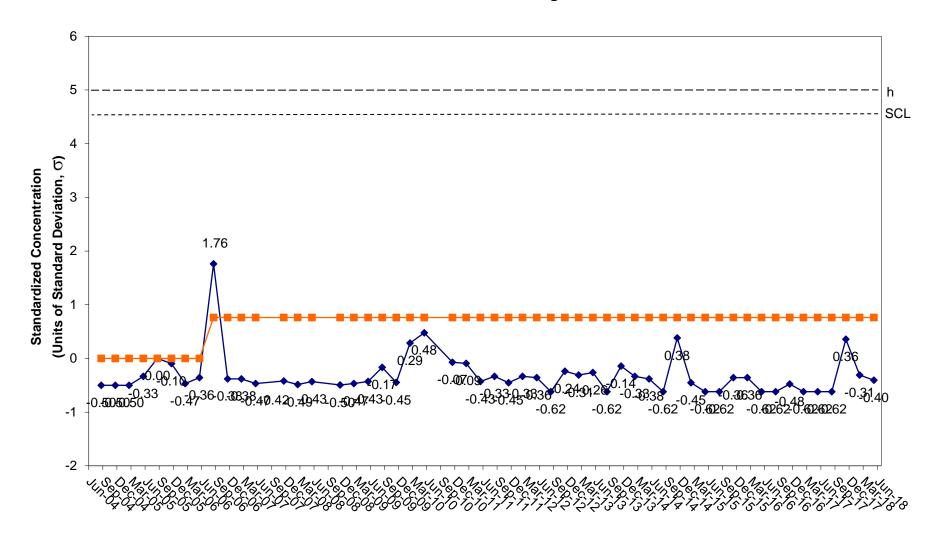

^{3.} Threshold value given is the Secondary Drinking Water Regulation (SDWR) as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{4.} Threshold value given is the Drinking Water Advisory as provided in the USEPA 2004 Edition of the Drinking Water Standards and Health Advisories

^{5.} Threshold value given is the Preliminary Remedial Goal (PRG) for tap water, as provided in the October 2002 USEPA Region 9 PRGs Table 2002 Update

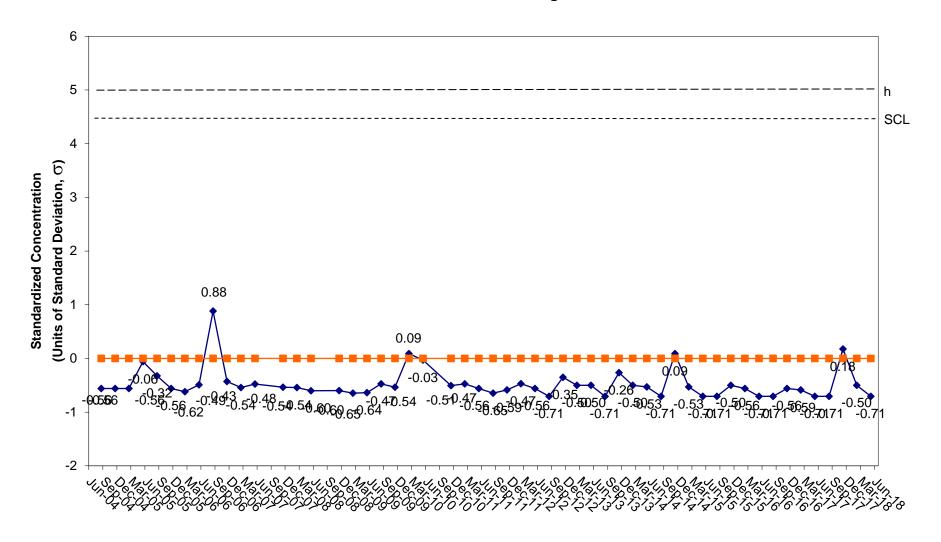

^{6.} Constituent concentration was reported above its laboratory method detection limit, but lower than its laboratory reporting limit and historical reporting limit.
However, the reporting limit this round was significantly higher than previous reporting limits. Therefore, to be consistent with historical data, only those constituents with concentrations lower than historical reporting limits were reported as non-detect.

Historical Tolerance Limit Concentrations from Background Well Tiverton Landfill Compliance Sampling

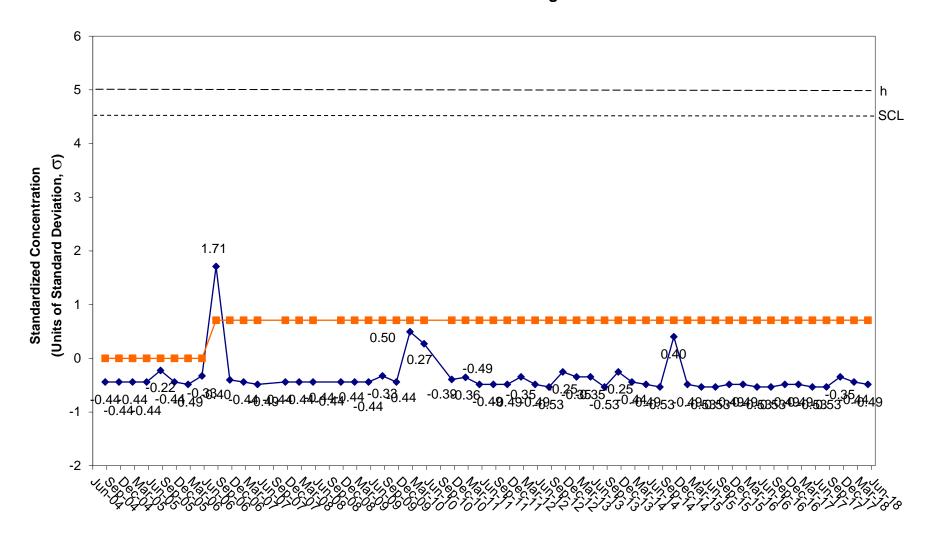


<u>ATTACHMENT NO. 5</u> CUSUM METHOD STATISTICAL EVALUATION

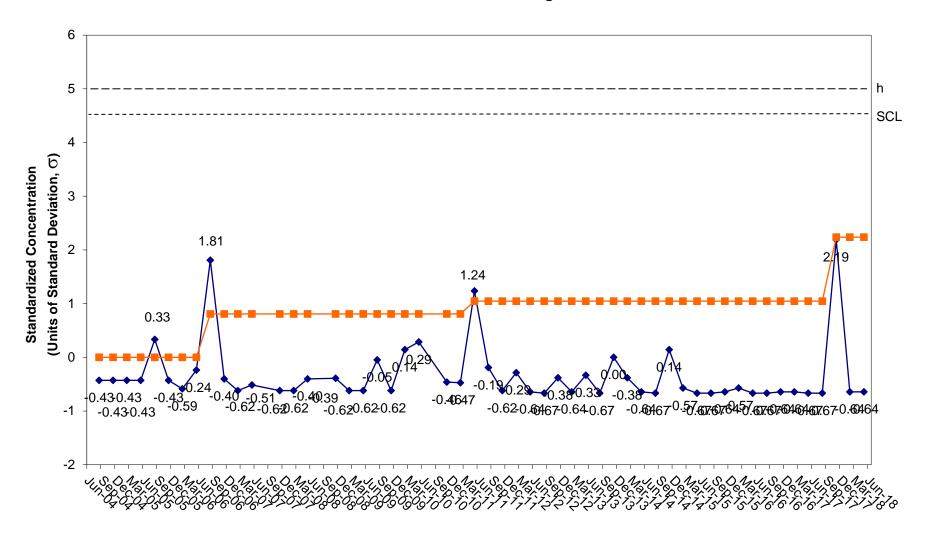
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Complaince Well OW-9



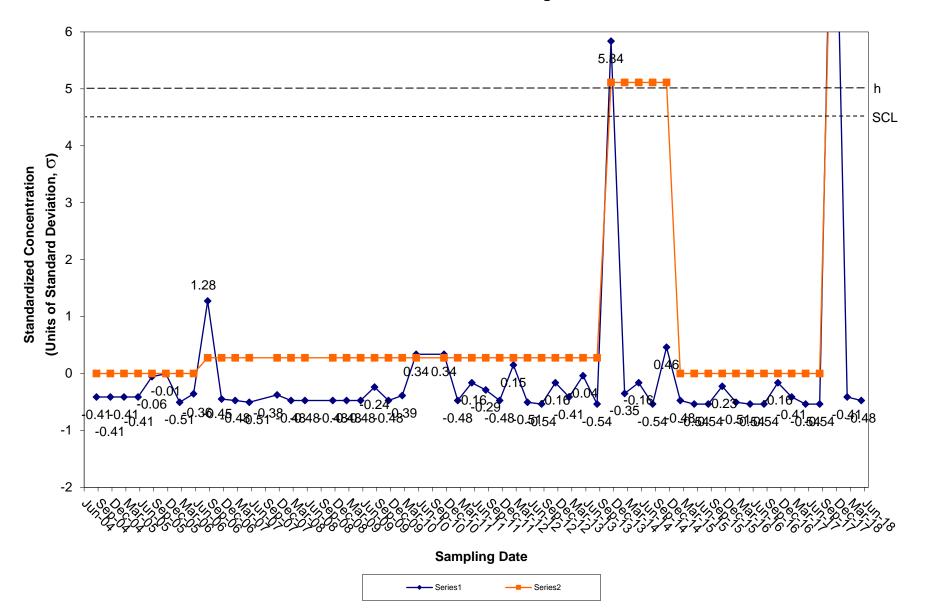
CUSUM Control Chart for Barium Tiverton Landfill Groundwater Background Well OW-9



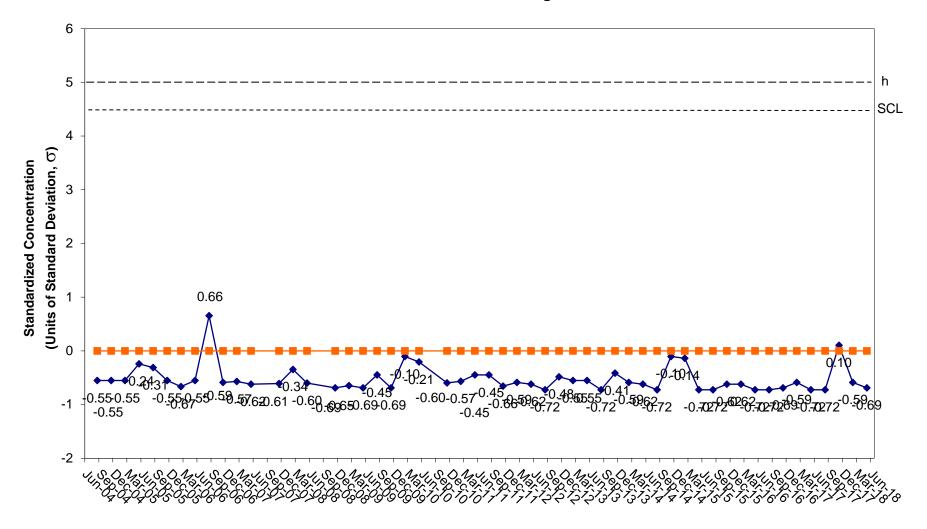
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Background Well OW-9



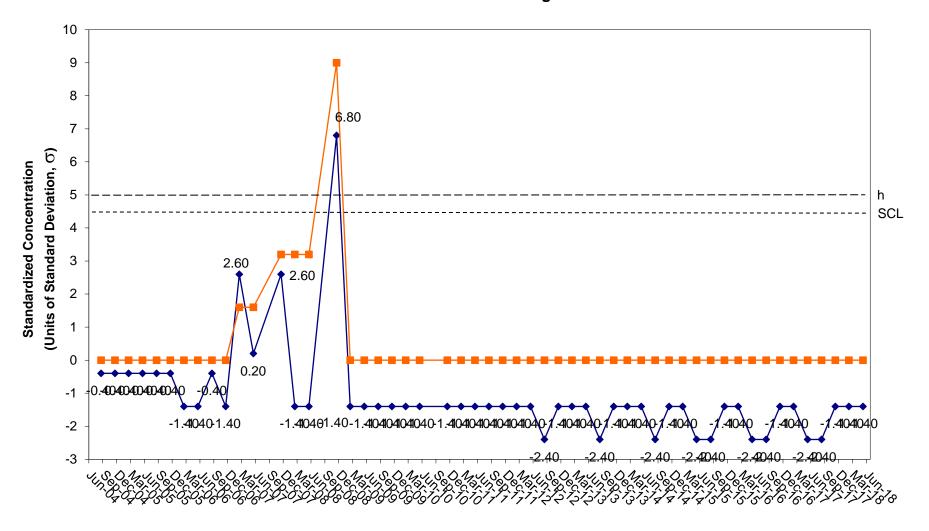
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Background Well OW-9



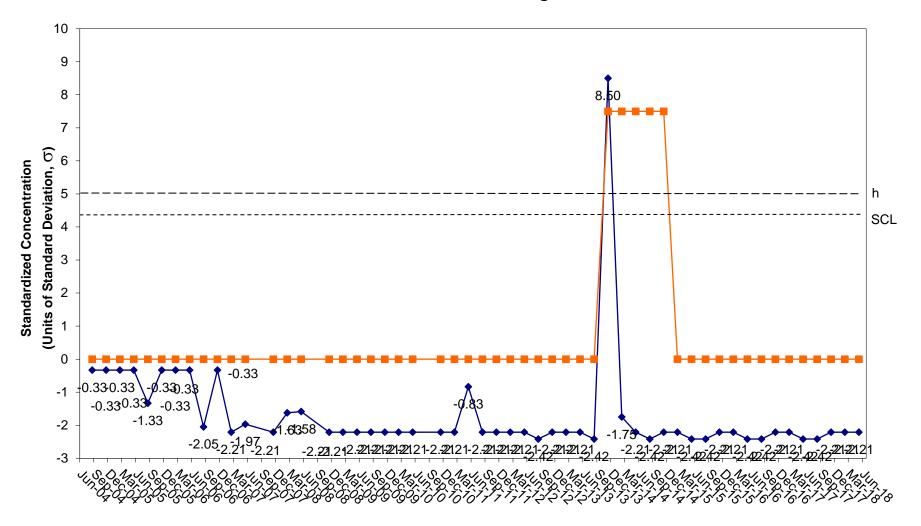
CUSUM Control Chart for Copper Tiverton Landfill Groundwater Background Well OW-9



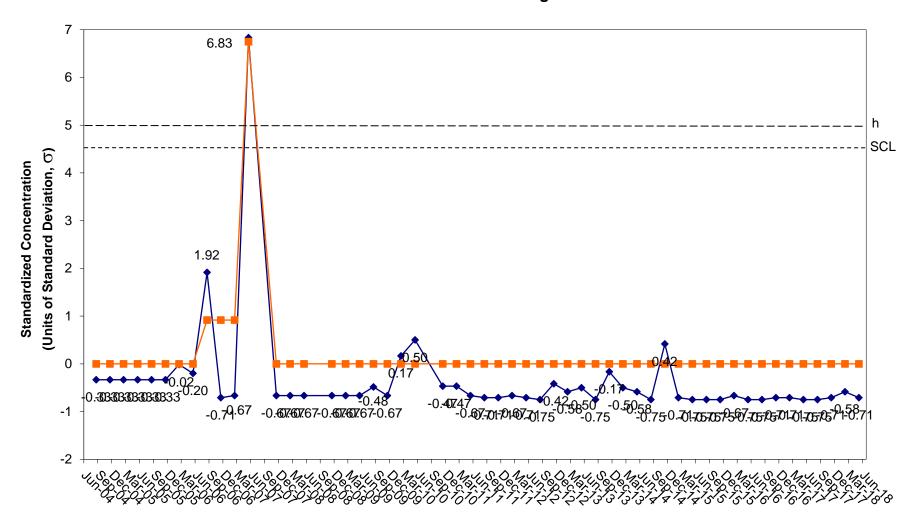
CUSUM Control Chart for Lead Tiverton Landfill Groundwater Background Well OW-9



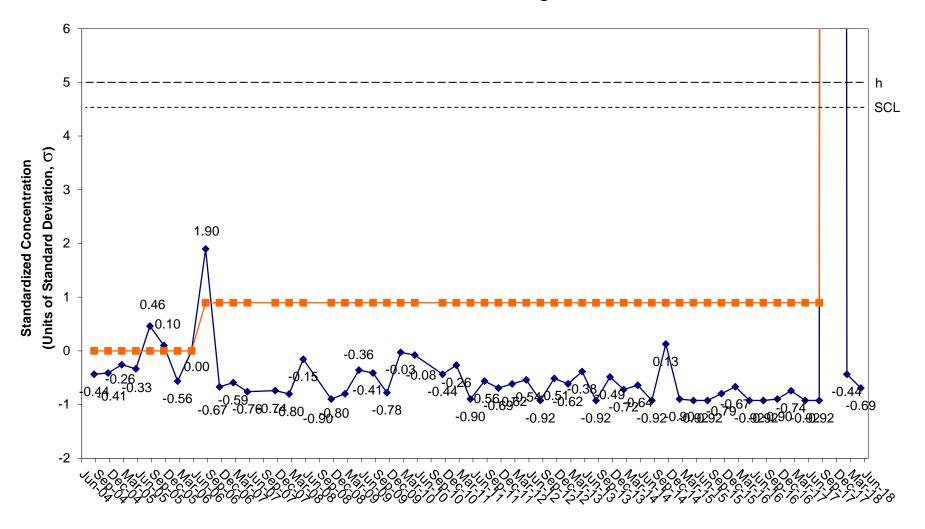
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Background Well OW-9



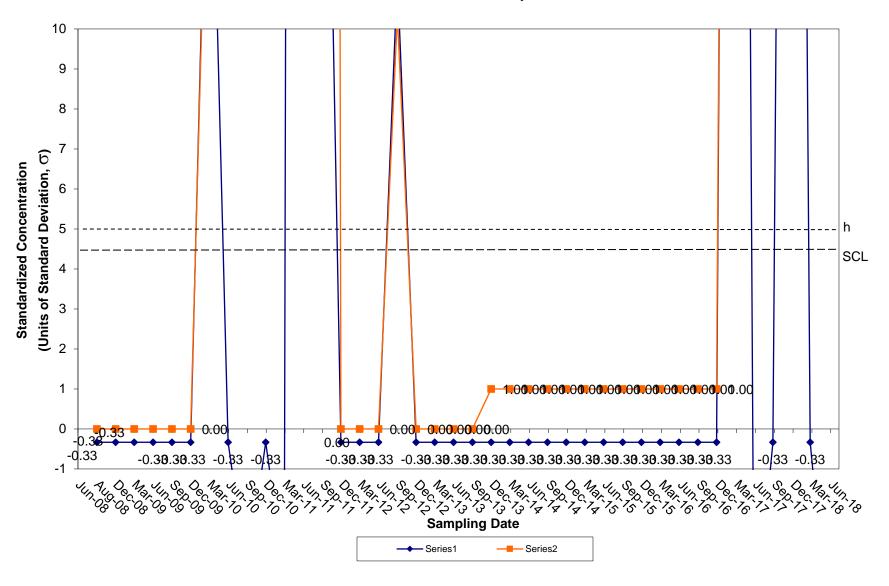
CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Background Well OW-9



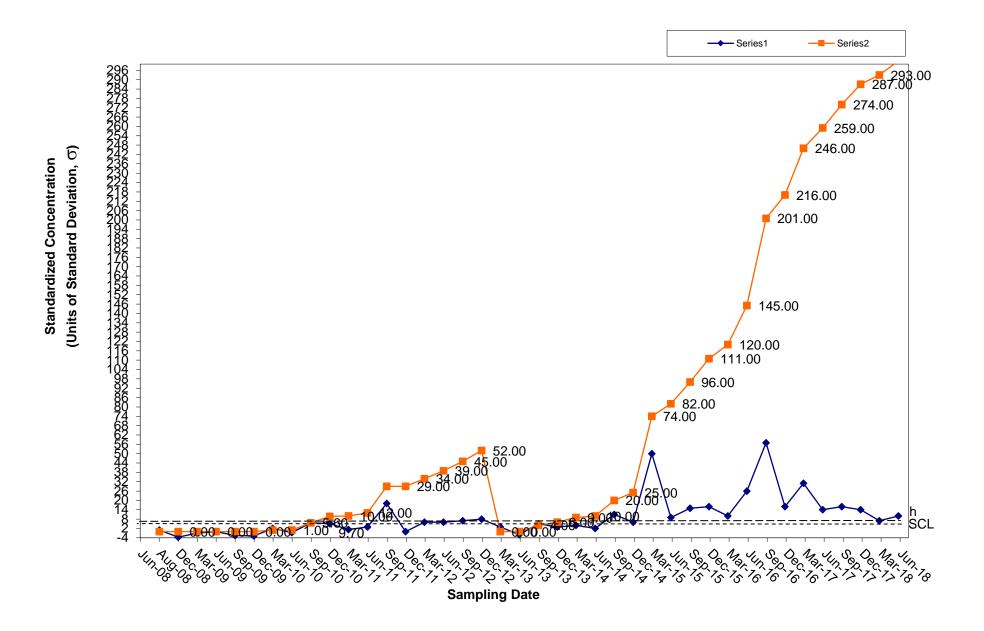
CUSUM Control Chart for Tin Tiverton Landfill Groundwater Background Well OW-9

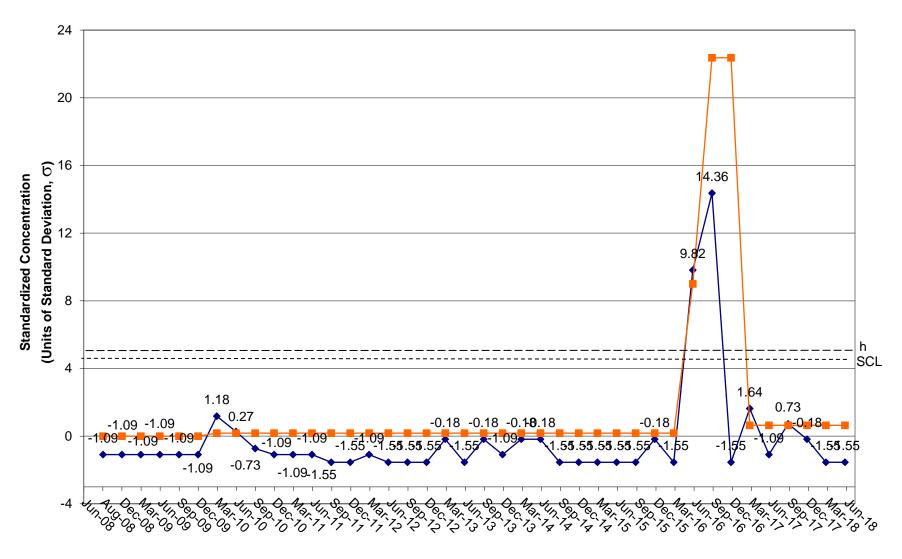


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Background Well OW-9

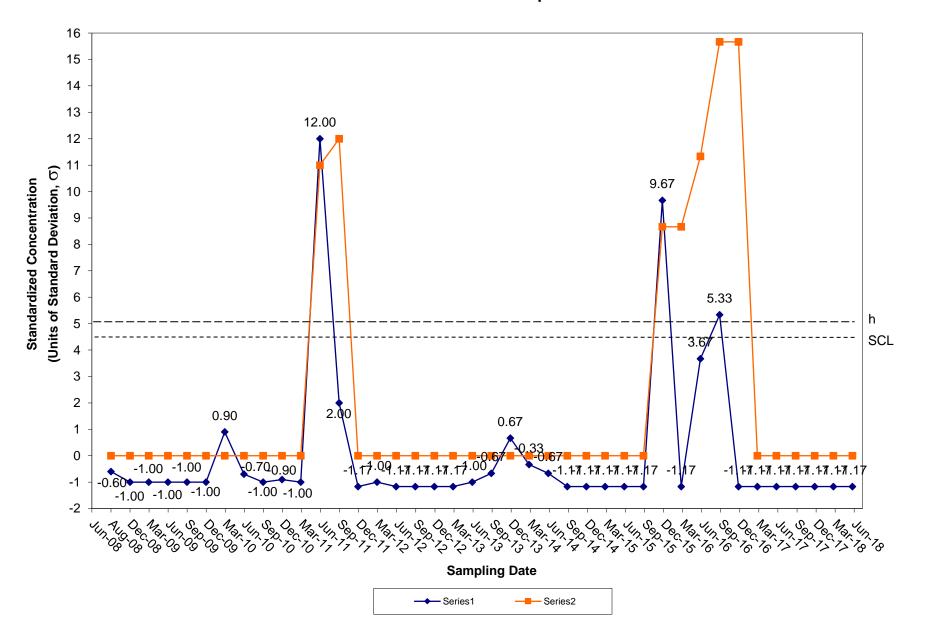


CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Background Well OW-9

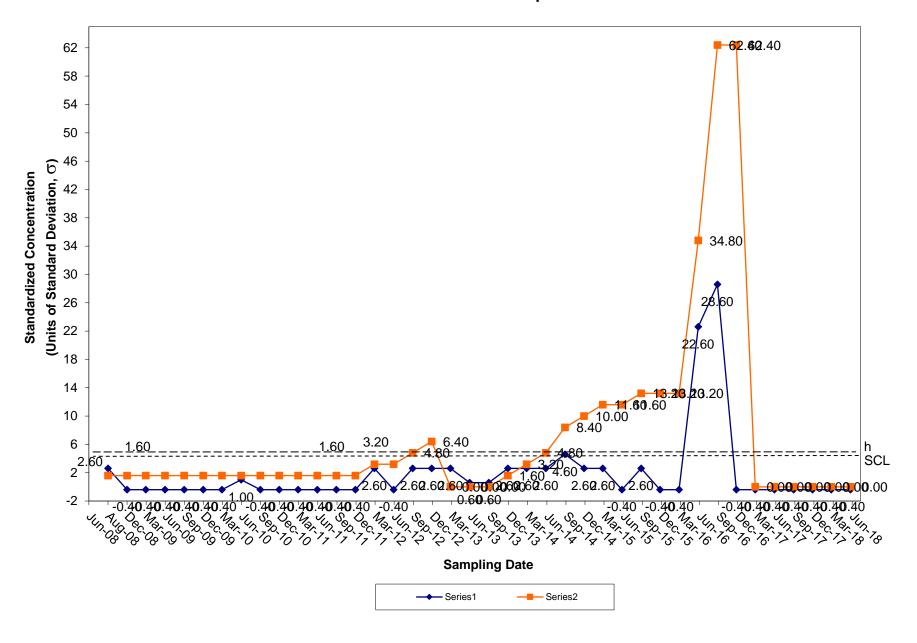


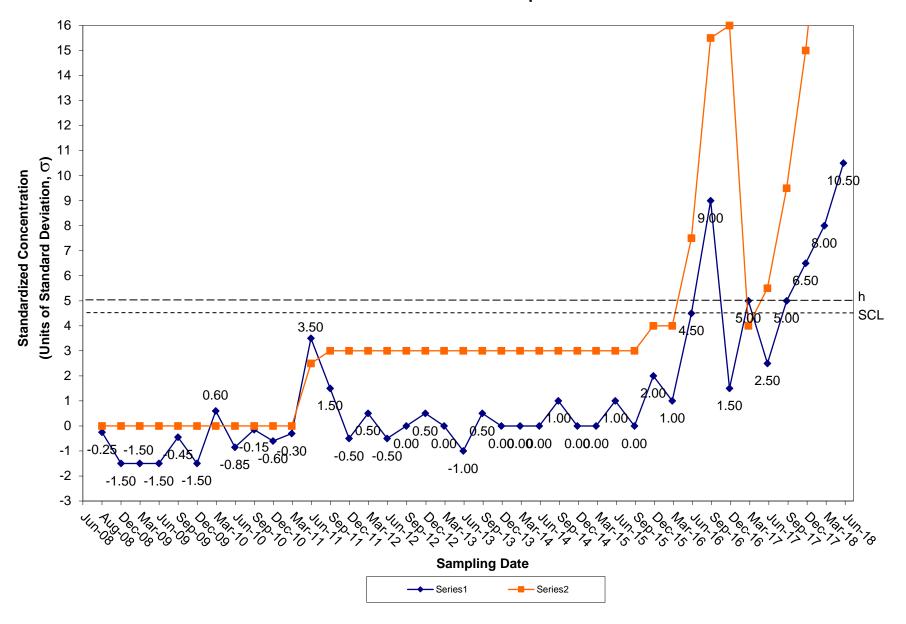

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-12

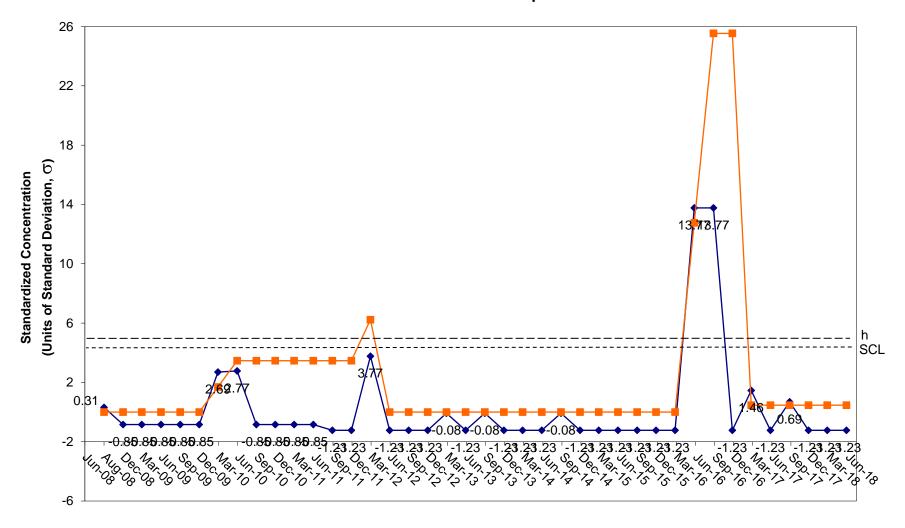
CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-12



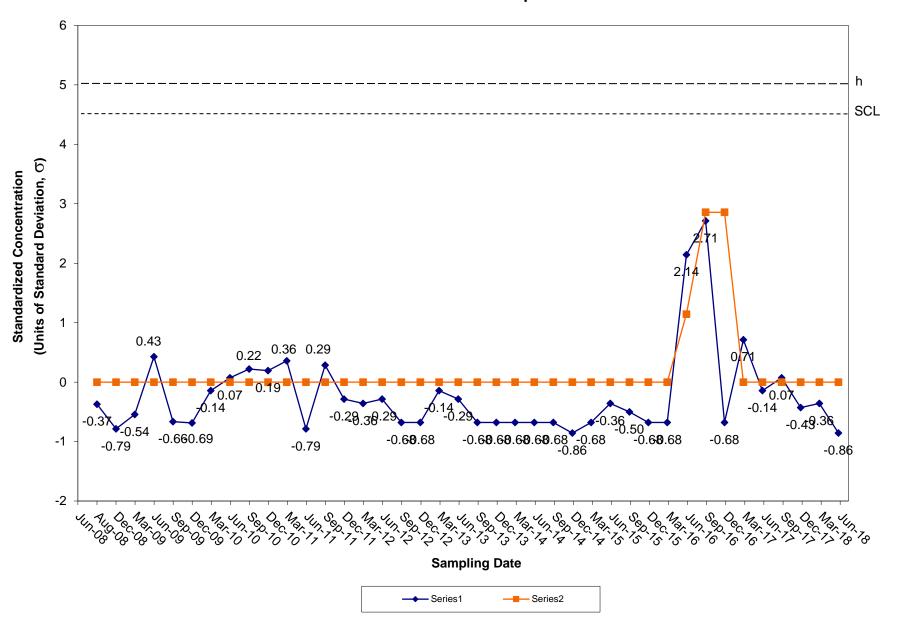
CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-12

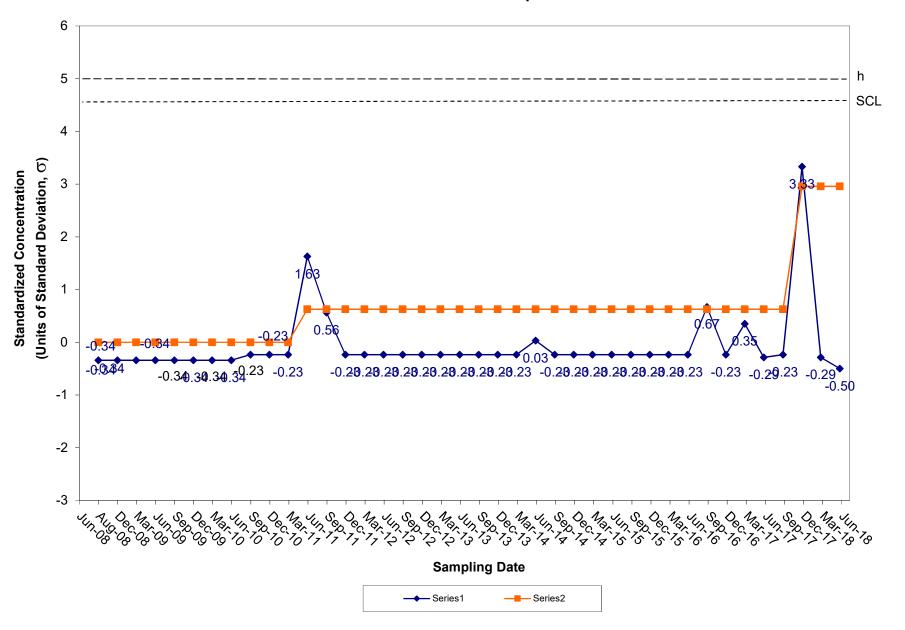


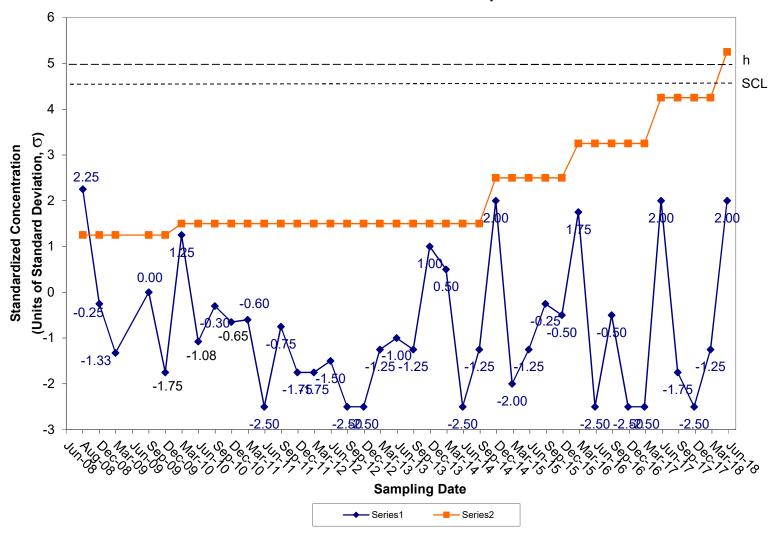

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-12

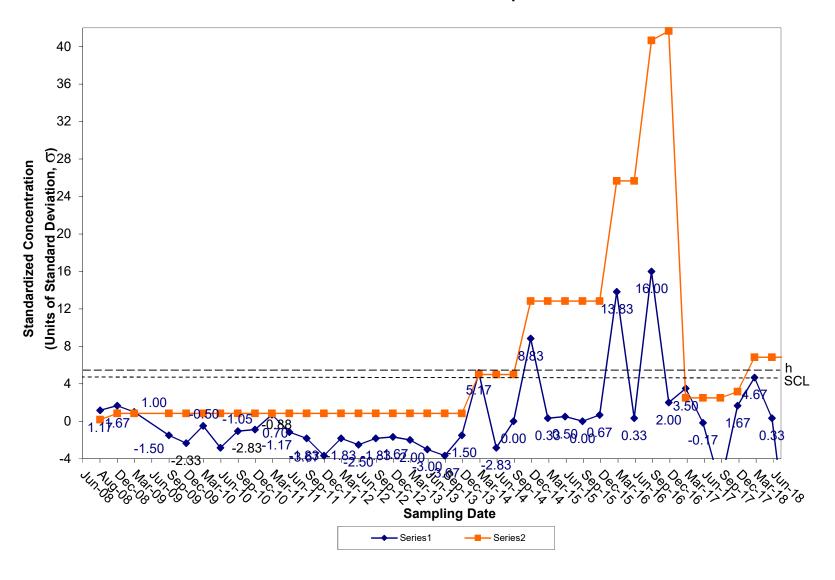

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-12

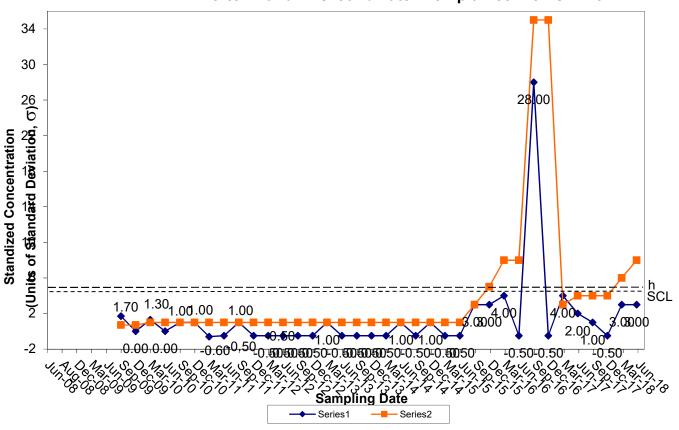
CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-12

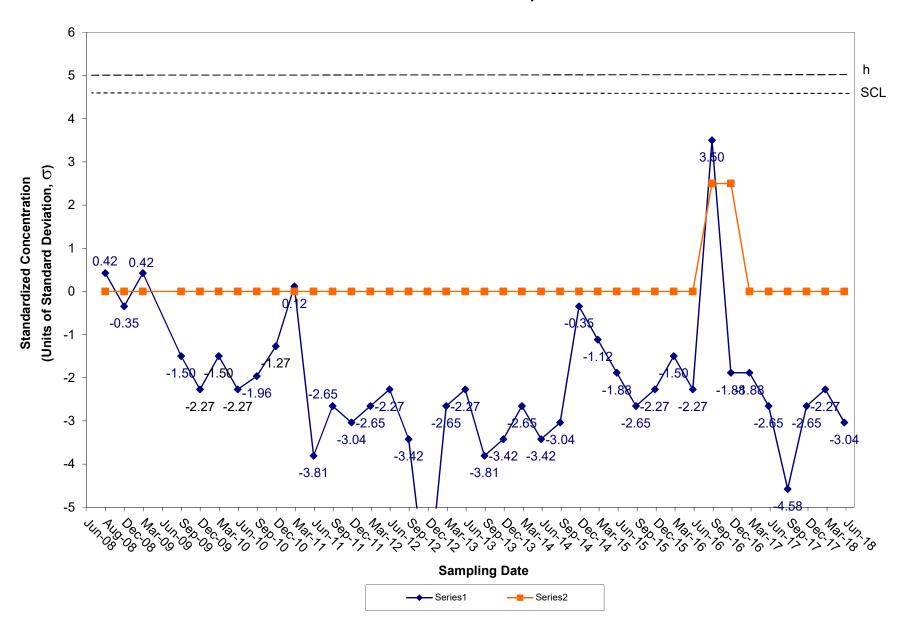

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-12

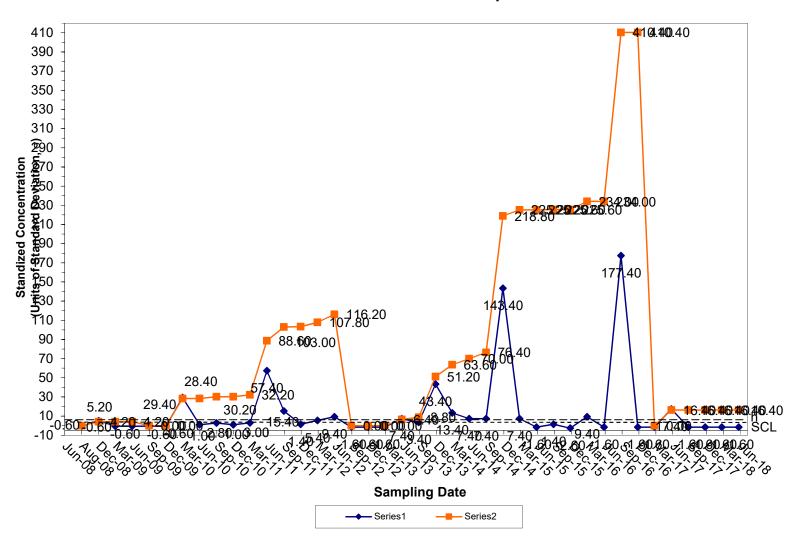


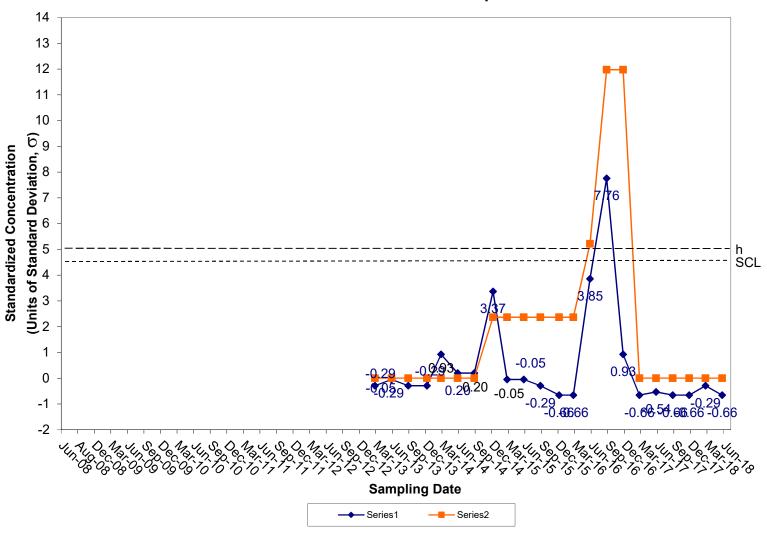

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-12

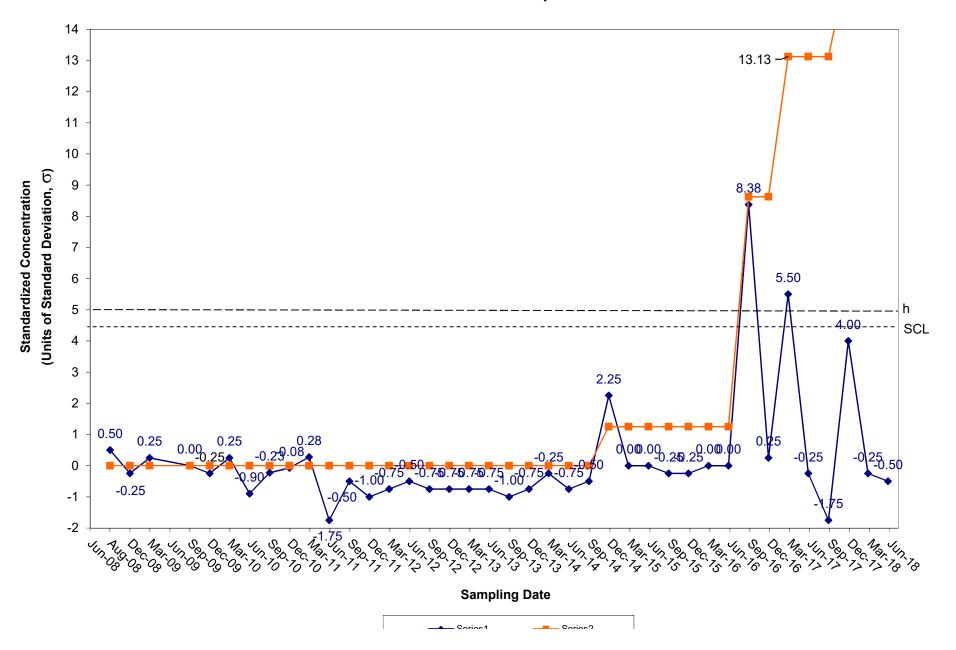

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-13

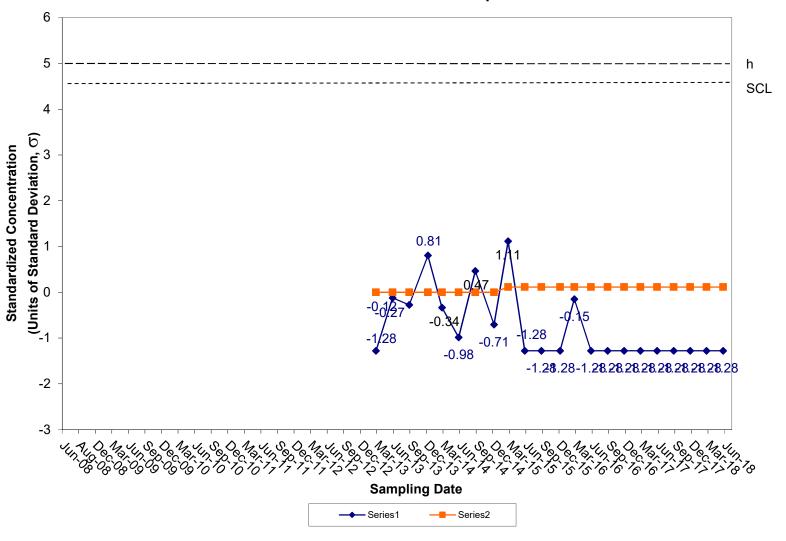

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-13

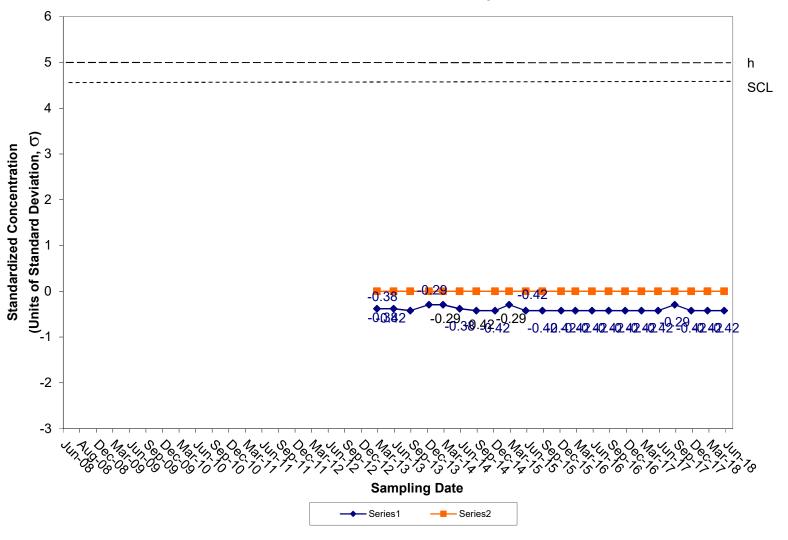

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-13

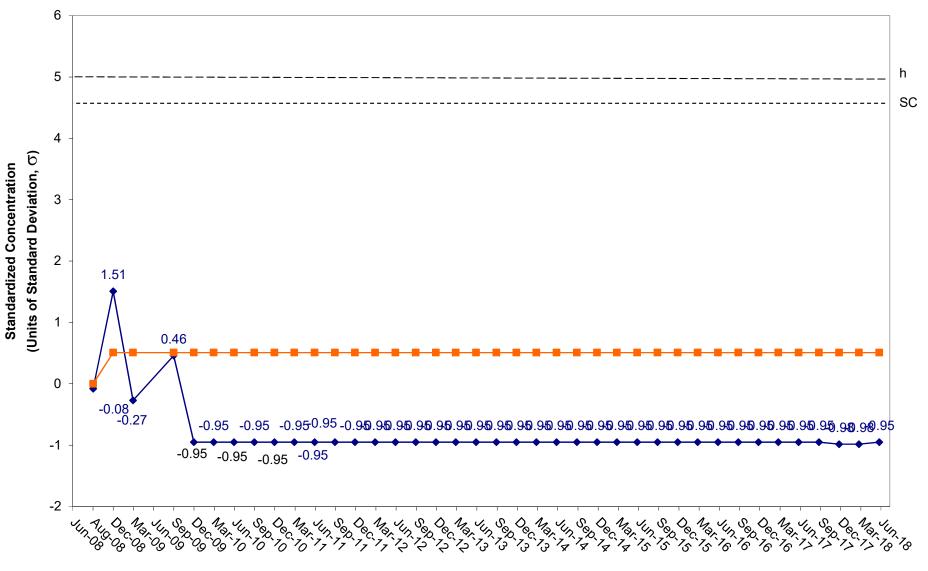

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Complaince Well OW-13


CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-13

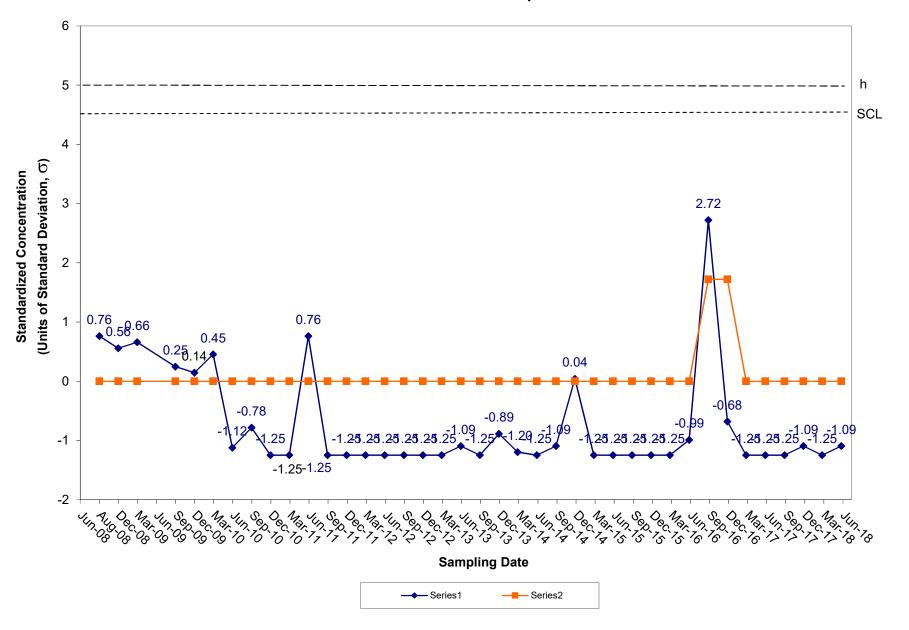

CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-13

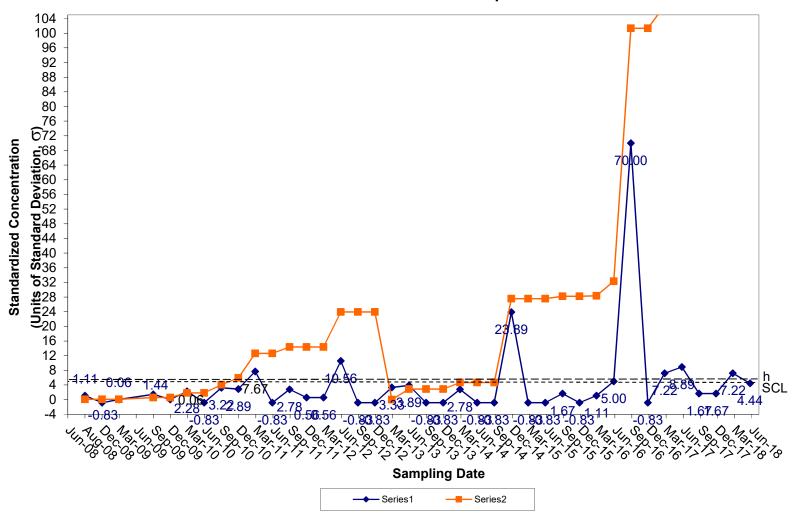

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-13

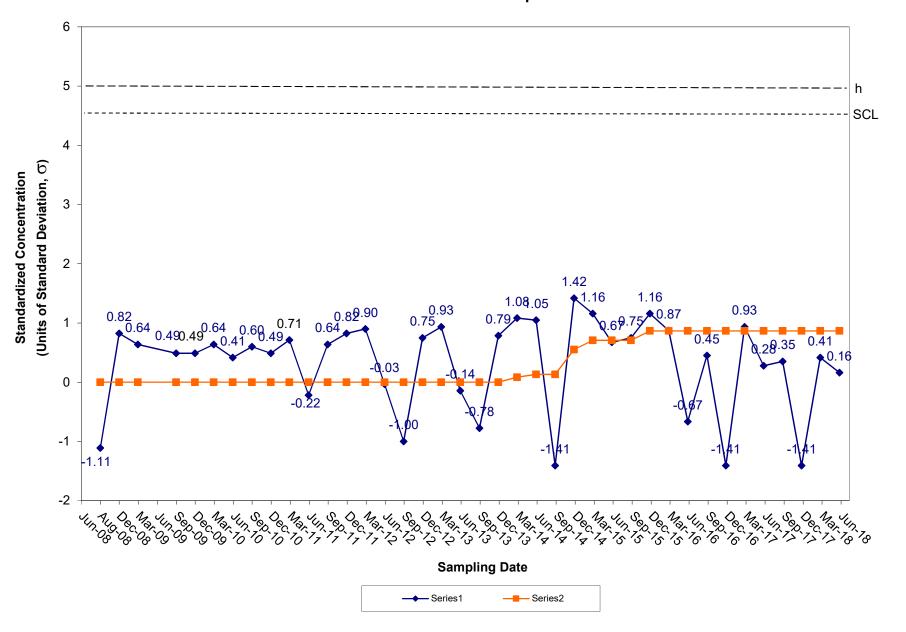

CUSUM Control Chart for Selenium Tiverton Landfill Groundwater Compliance Well OW-13

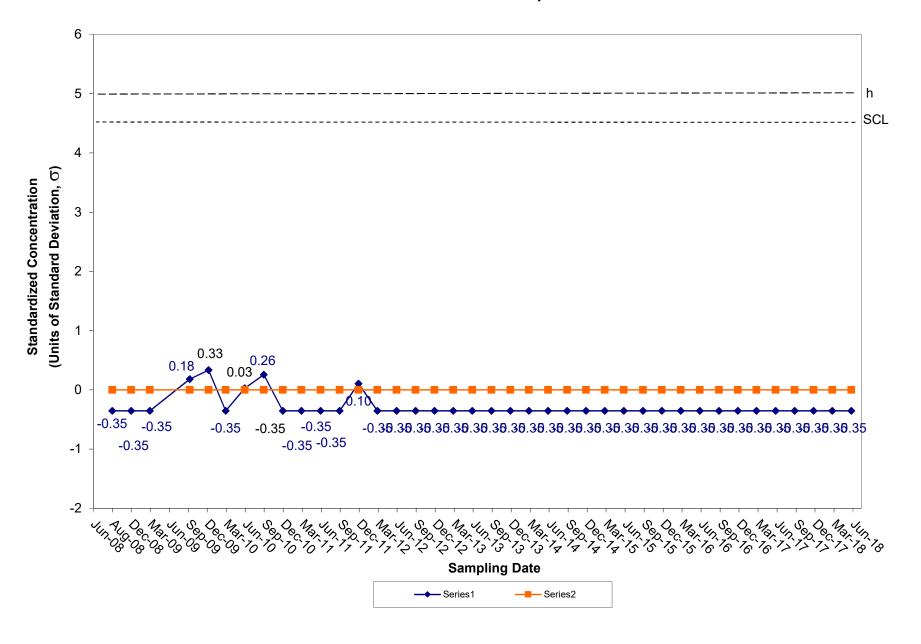
CUSUM Control Chart for Silver Tiverton Landfill Groundwater Compliance Well OW-13

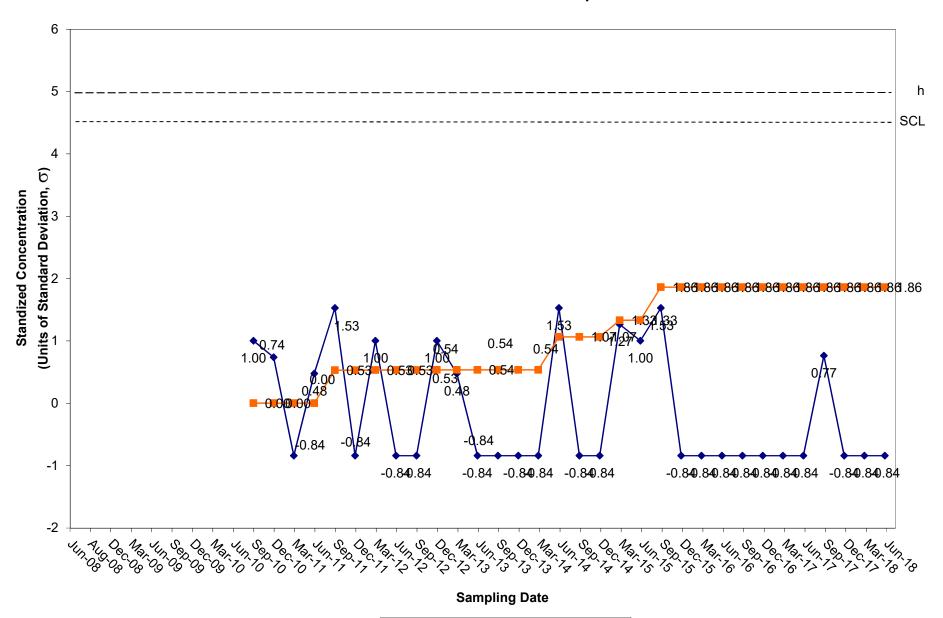

CUSUM Control Chart for Thallium Tiverton Landfill Groundwater Compliance Well OW-13

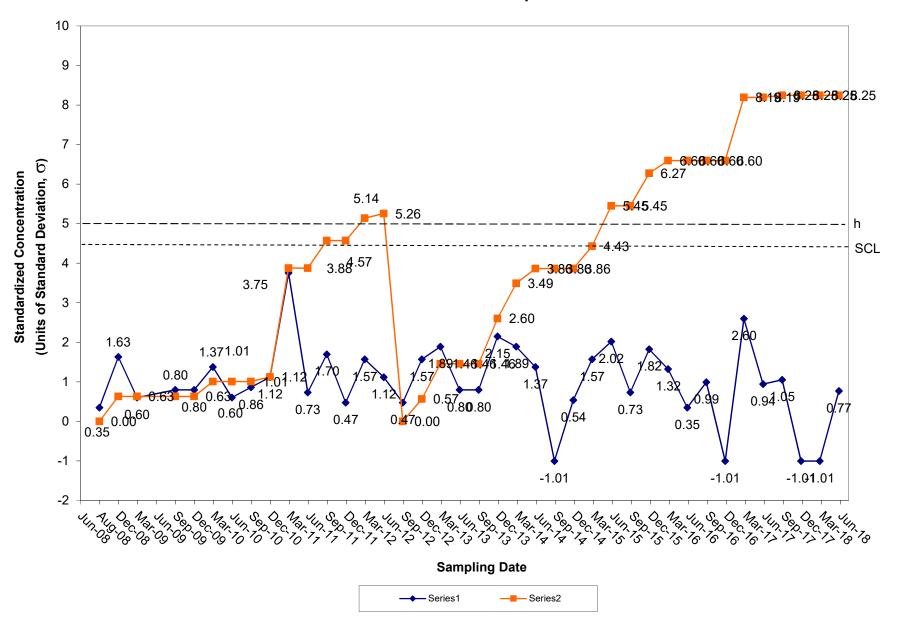

Sampling Date

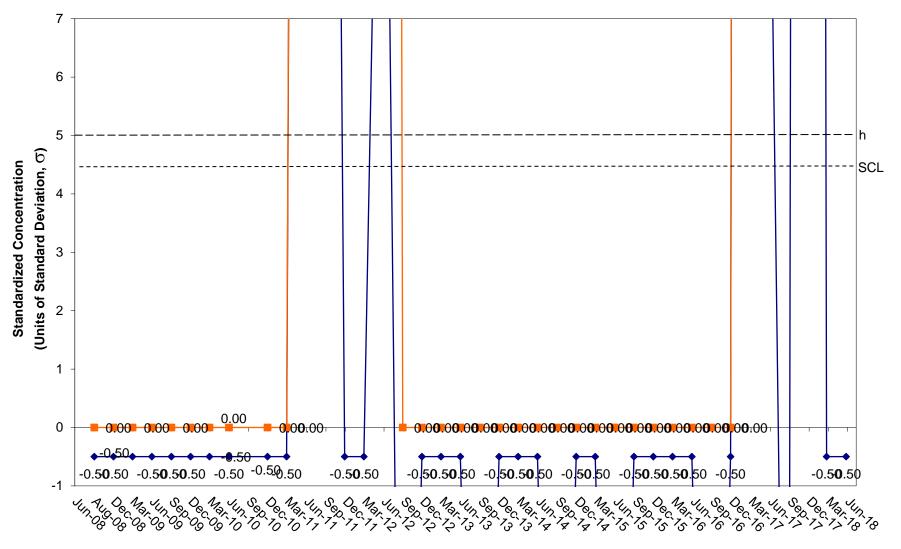
- 0 : 4


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-13

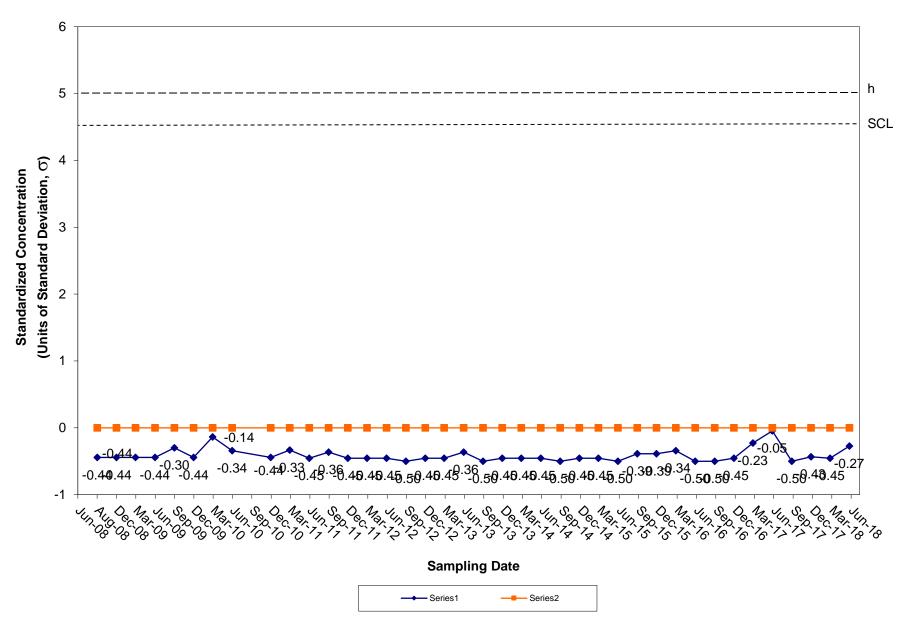

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-13


CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-13

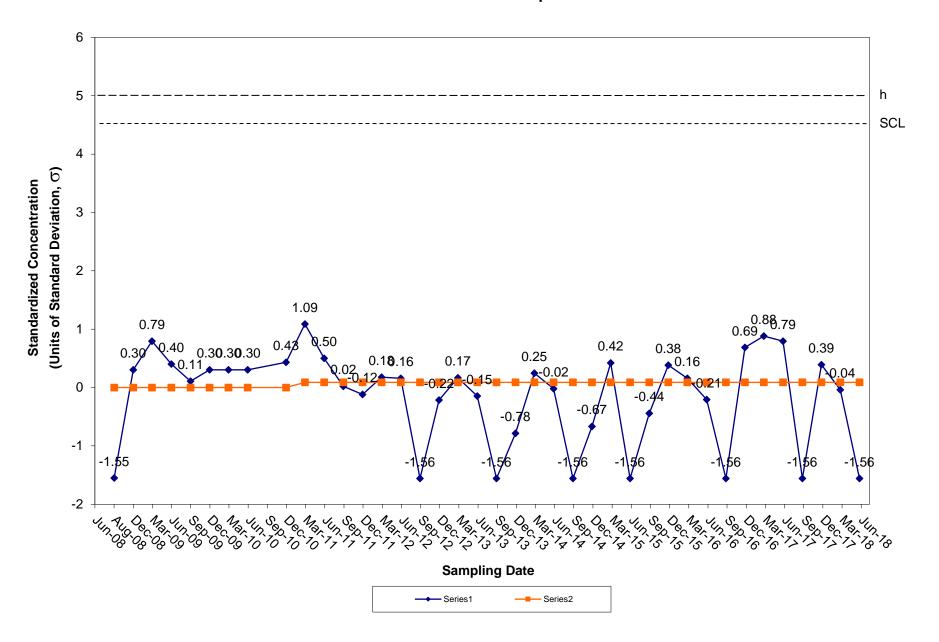

CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-13

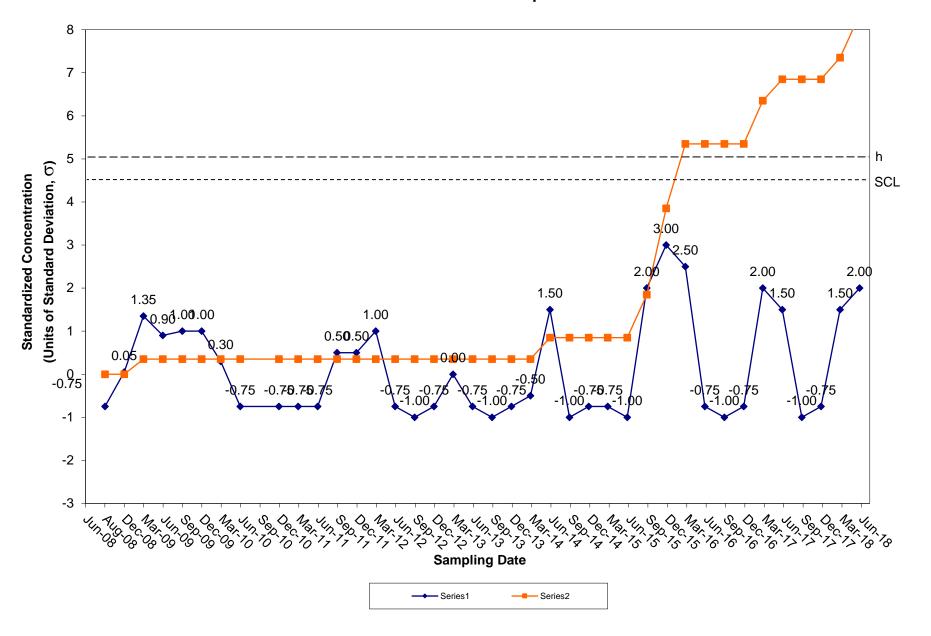

CUSUM Control Chart for 1,4-Dichlorobenzene - Adjusted Baseline Tiverton Landfill Groundwater Complaince Well OW-13

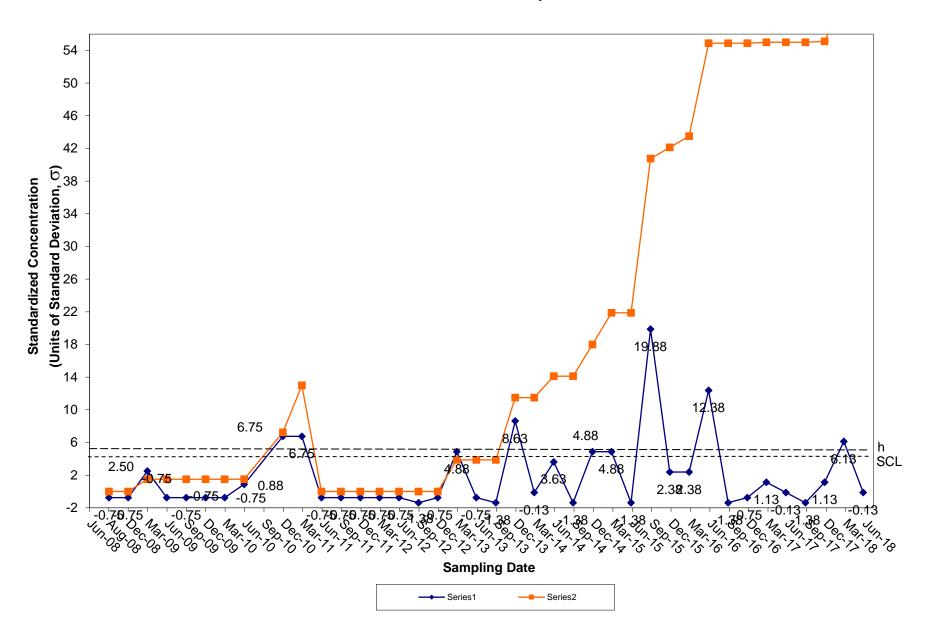
CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-13

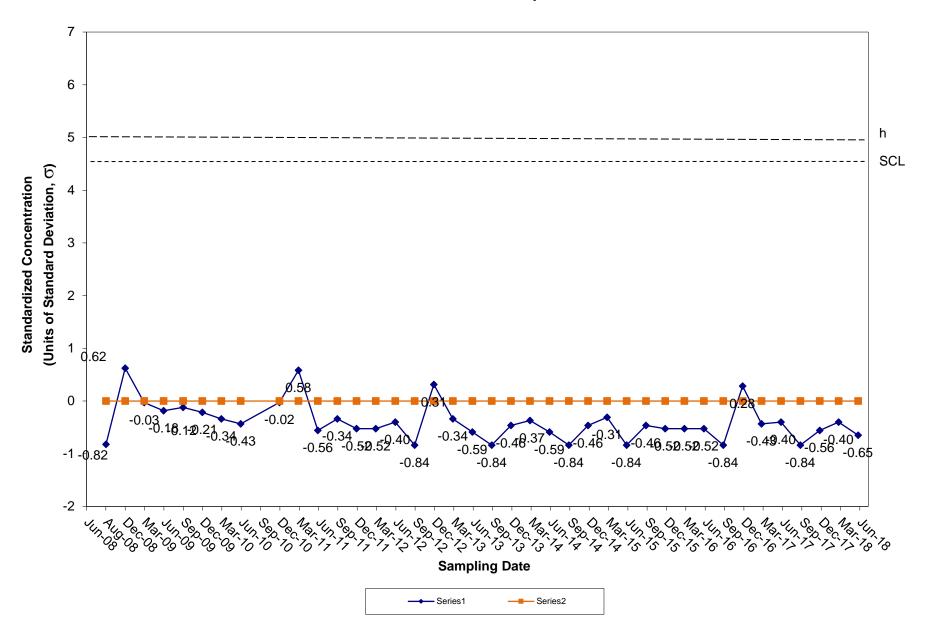


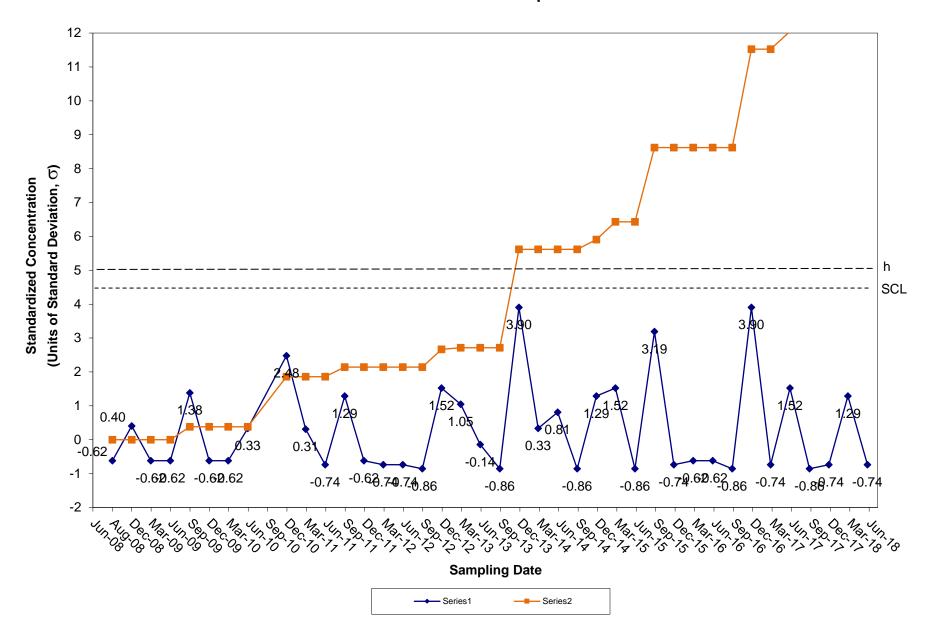
CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-14

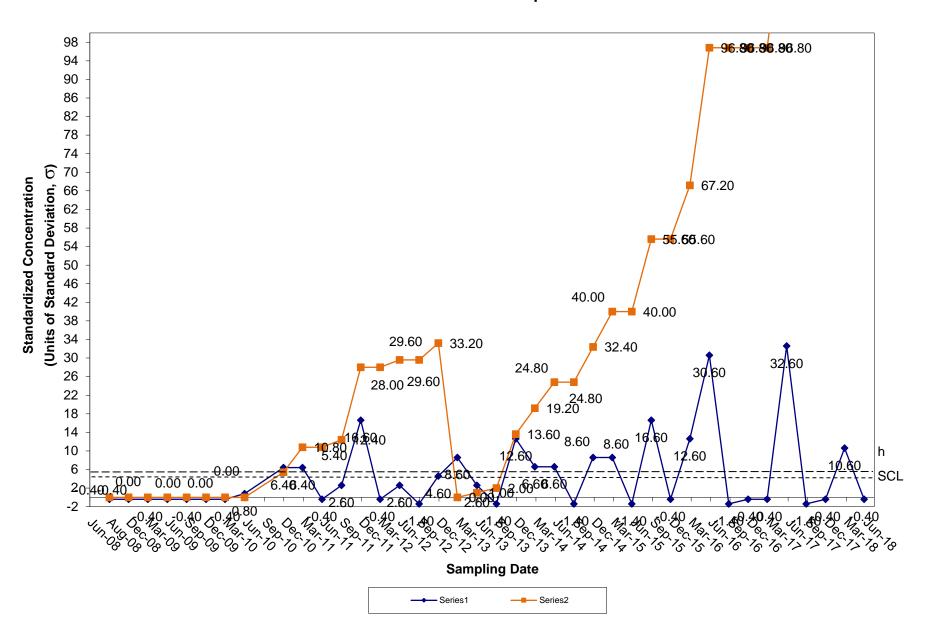


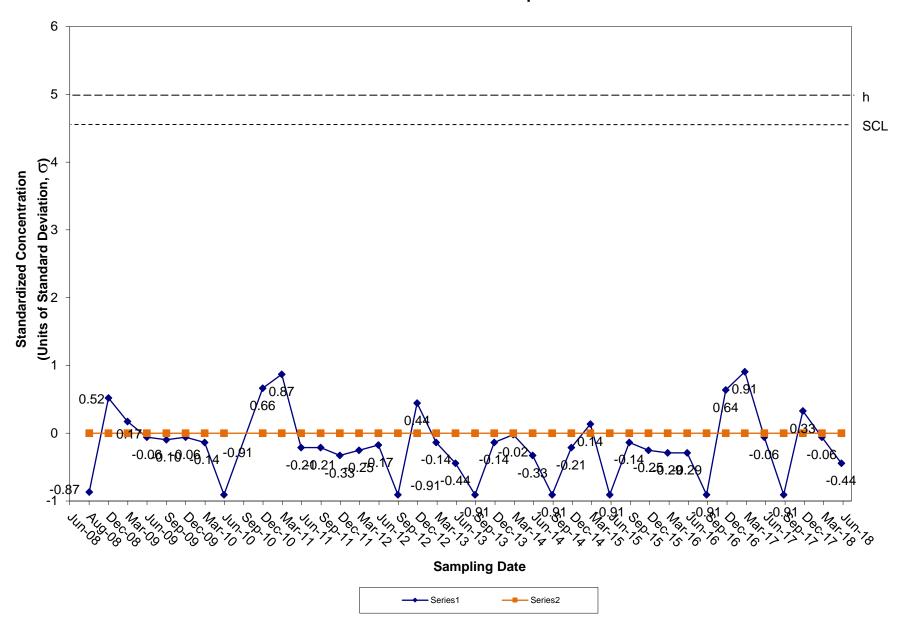

CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-14

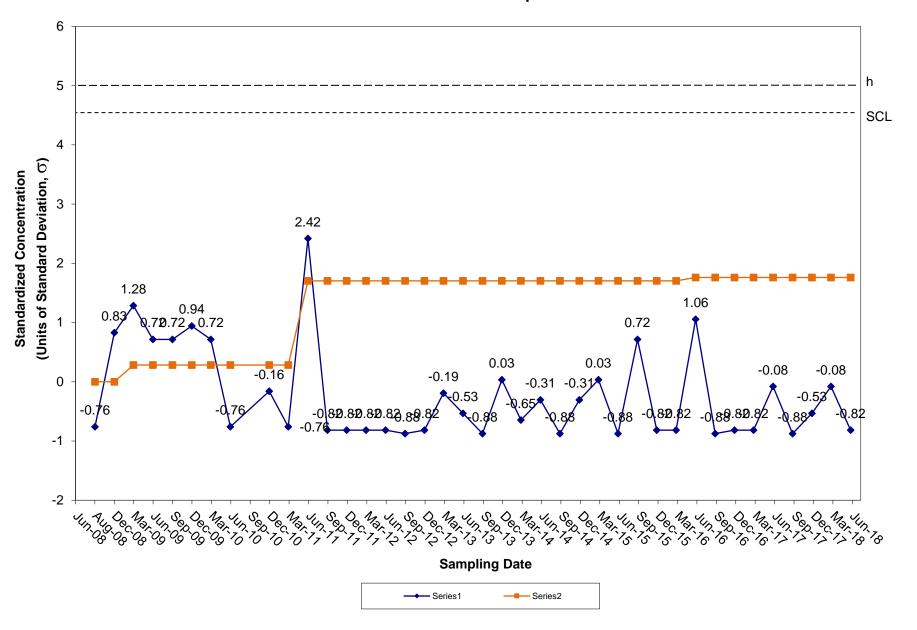

CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-14

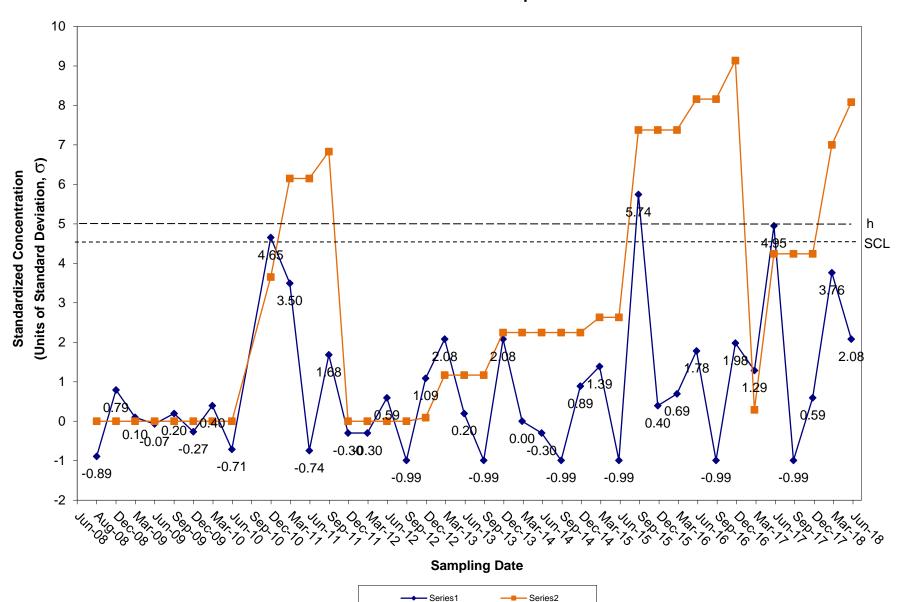

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-14

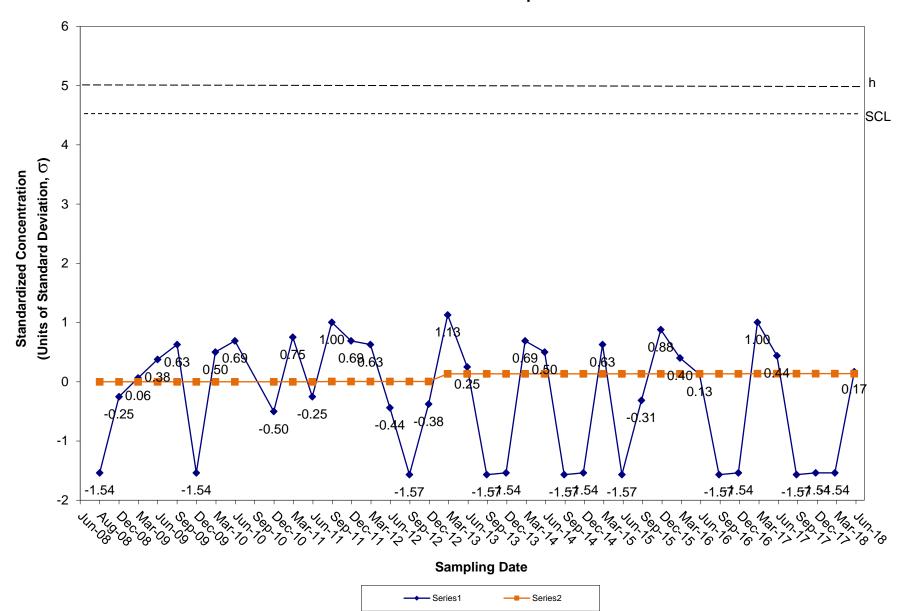

CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-14

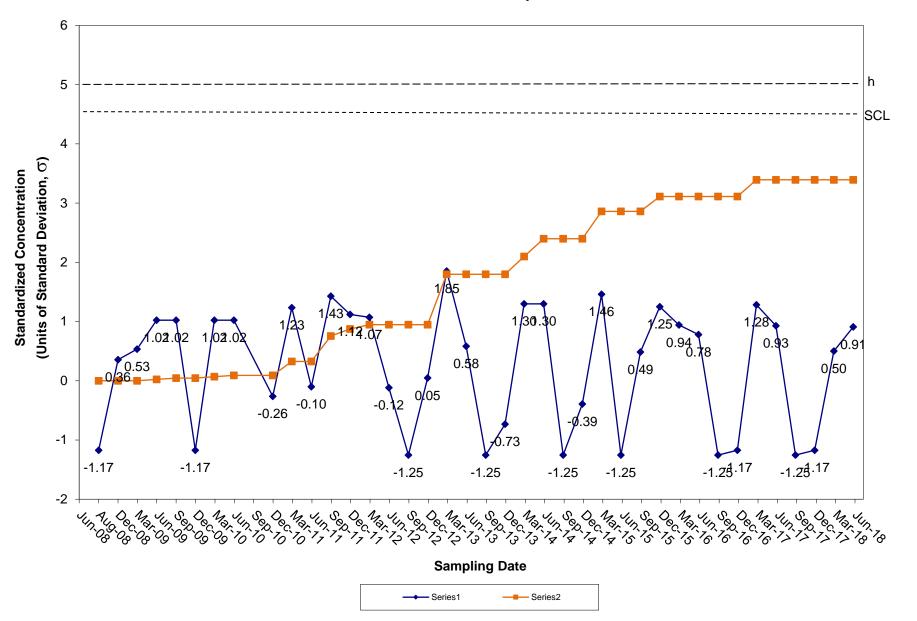

CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Copper Tiverton Landfill Groundwater Compliance Well OW-14

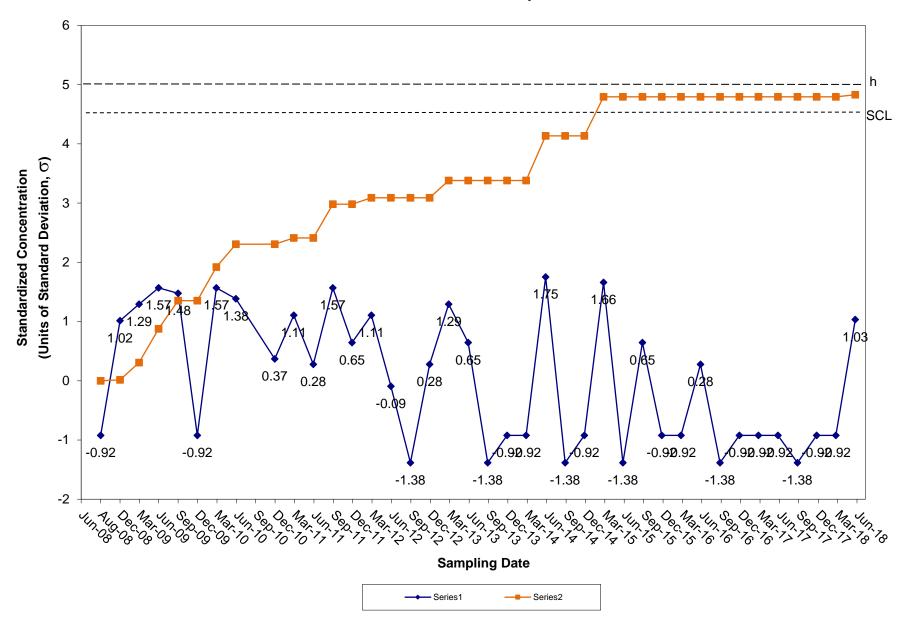

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-14

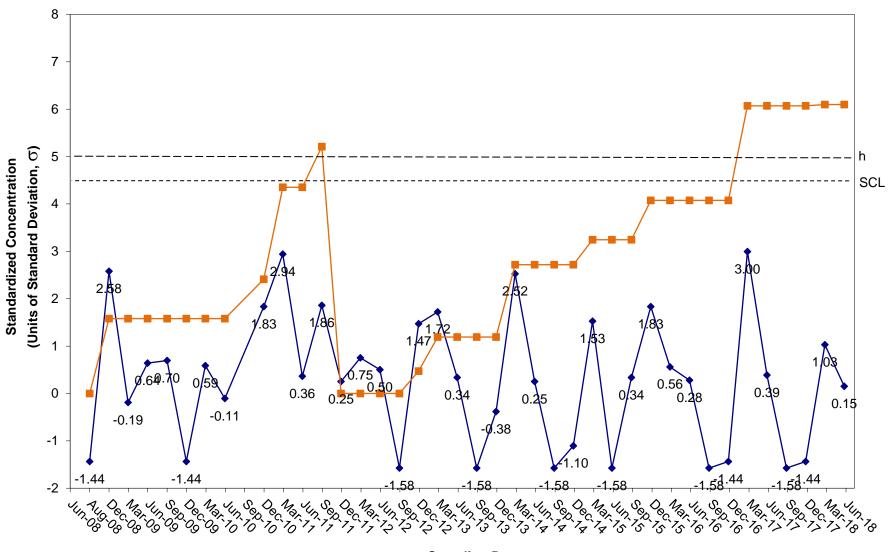

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Compliance Well OW-14

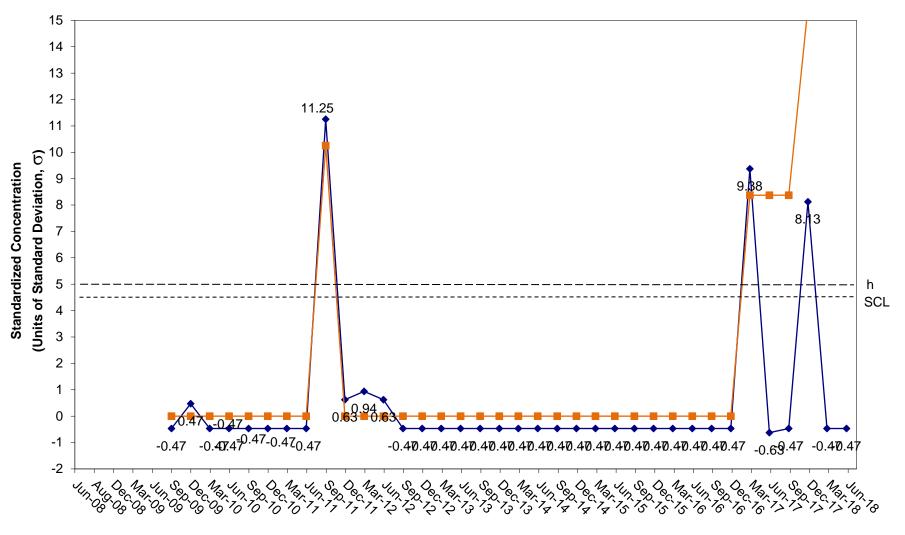

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-14

CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-14

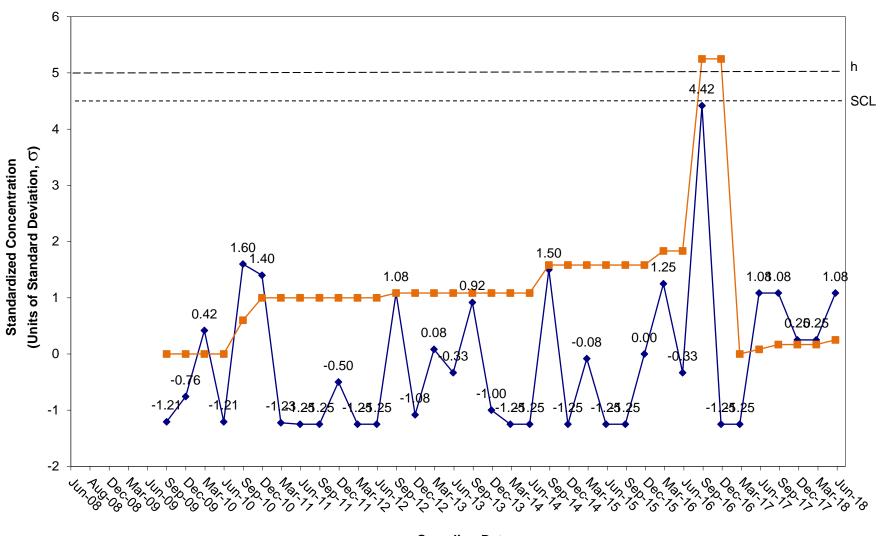

CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Compliance Well OW-14

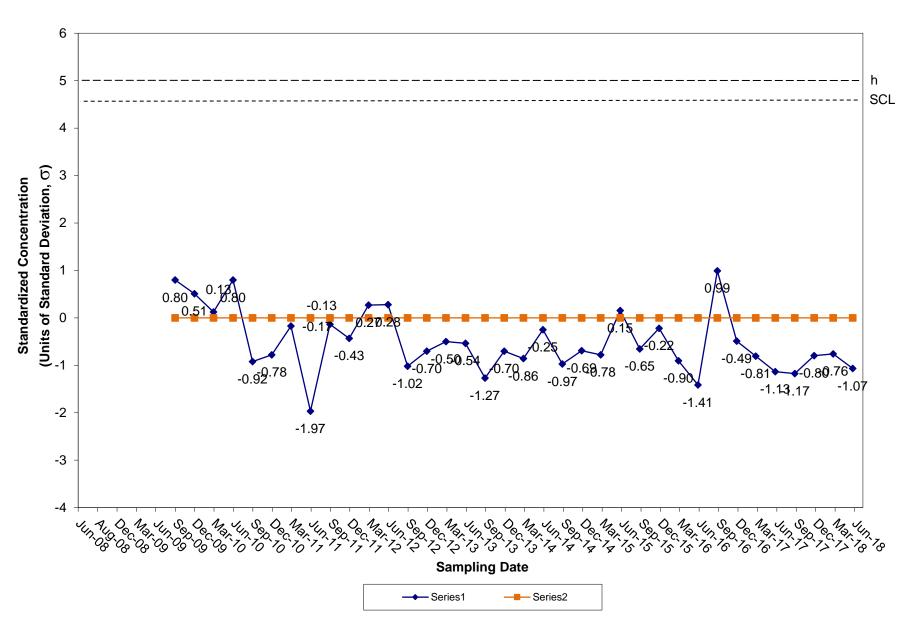
CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-14

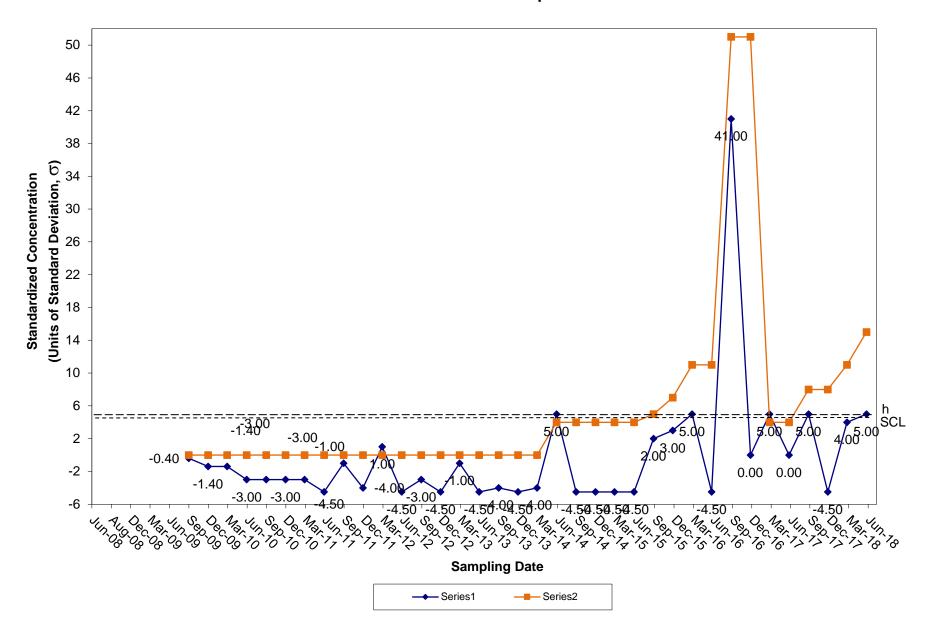

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-14

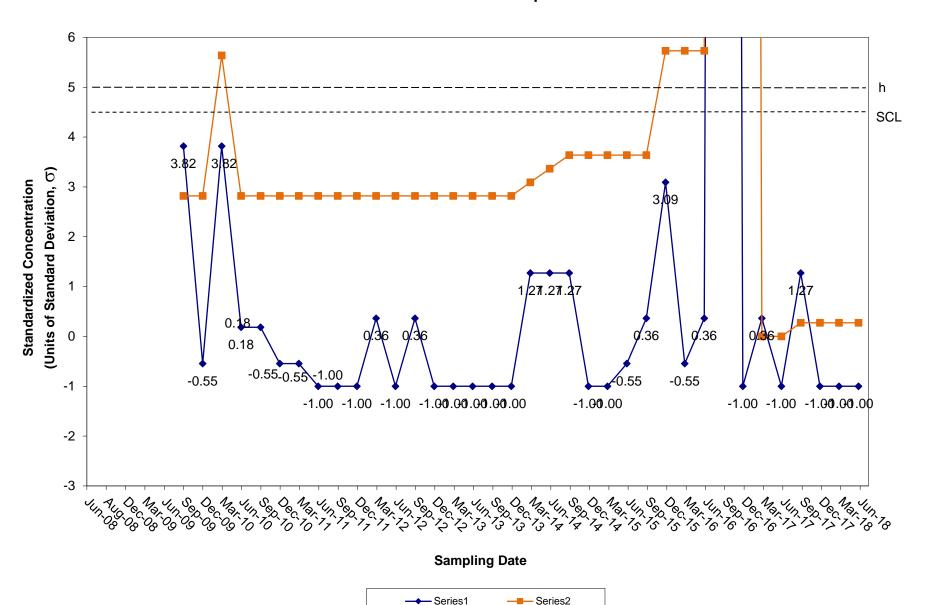
Sampling Date

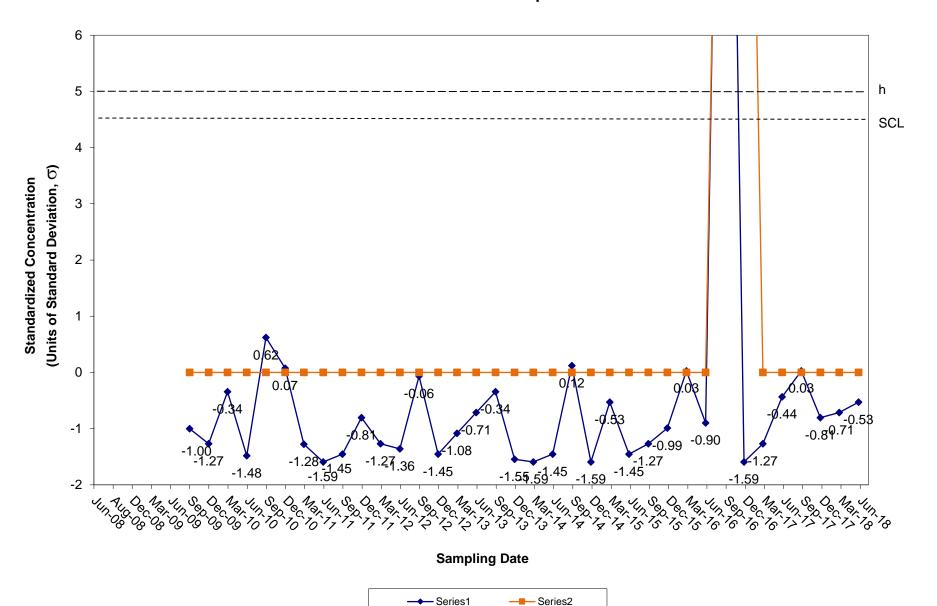

CUSUM Control Chart for Antimony Tiverton Landfill Groundwater Compliance Well OW-15

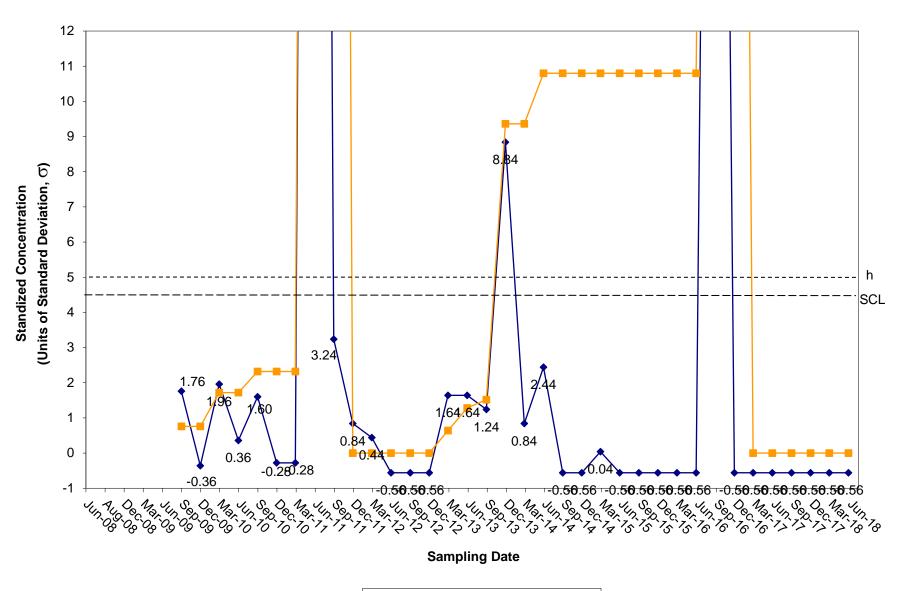
Sampling Date


CUSUM Control Chart for Arsenic Tiverton Landfill Groundwater Compliance Well OW-15

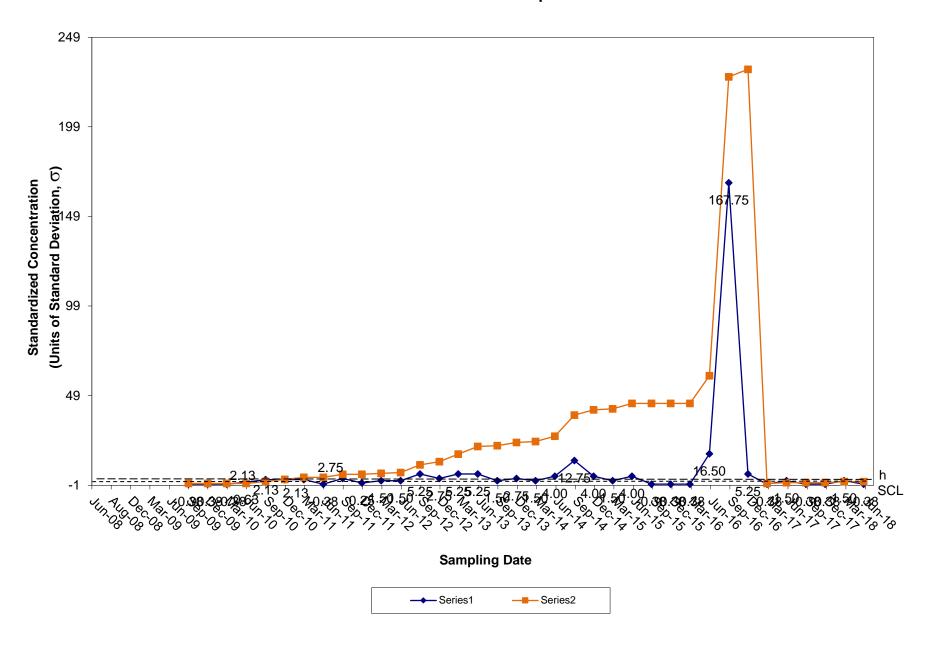

Sampling Date


CUSUM Control Chart for Barium Tiverton Landfill Groundwater Compliance Well OW-15

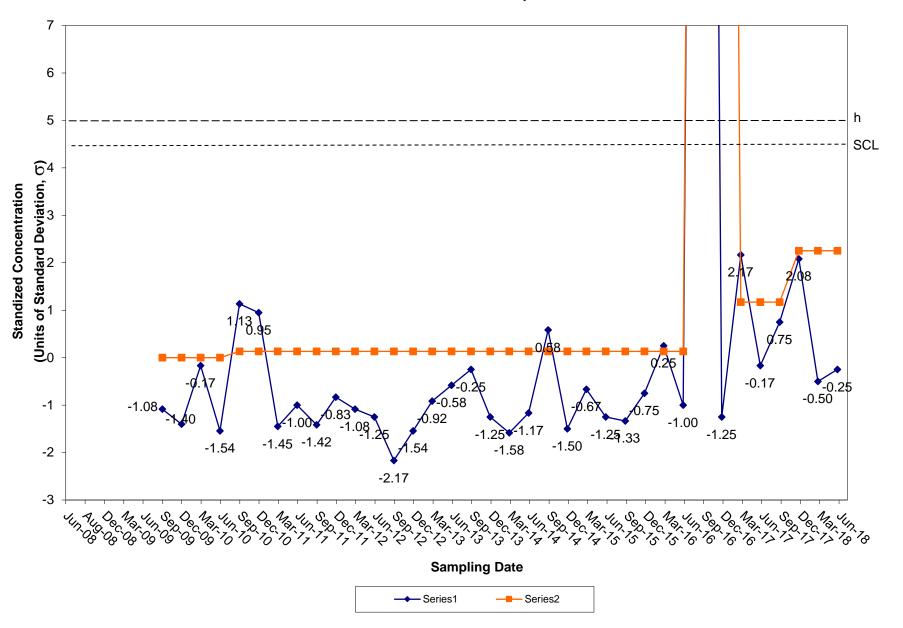

CUSUM Control Chart for Cadmium Tiverton Landfill Groundwater Compliance Well OW-15

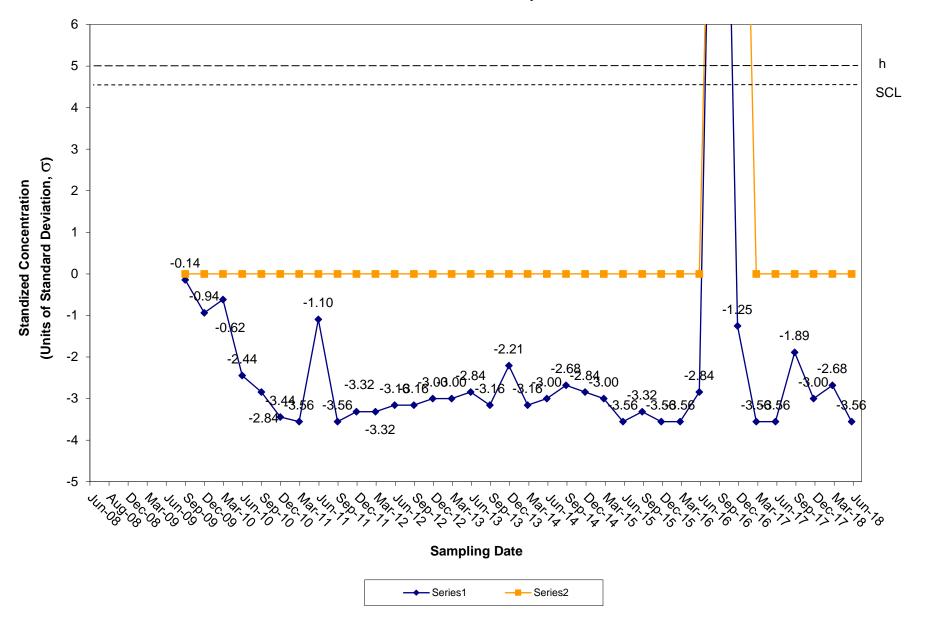

CUSUM Control Chart for Chromium Tiverton Landfill Groundwater Compliance Well OW-15

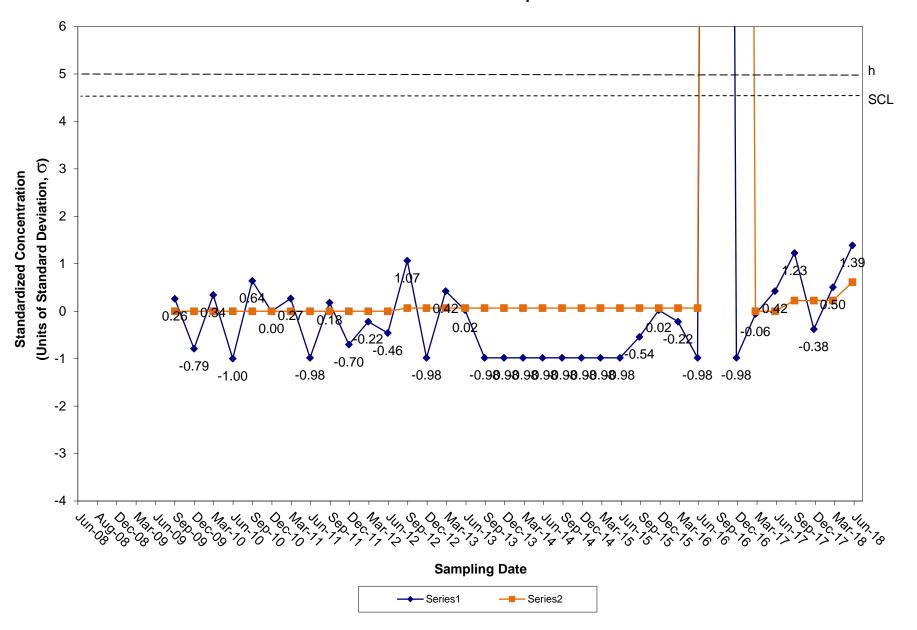
CUSUM Control Chart for Cobalt Tiverton Landfill Groundwater Compliance Well OW-15

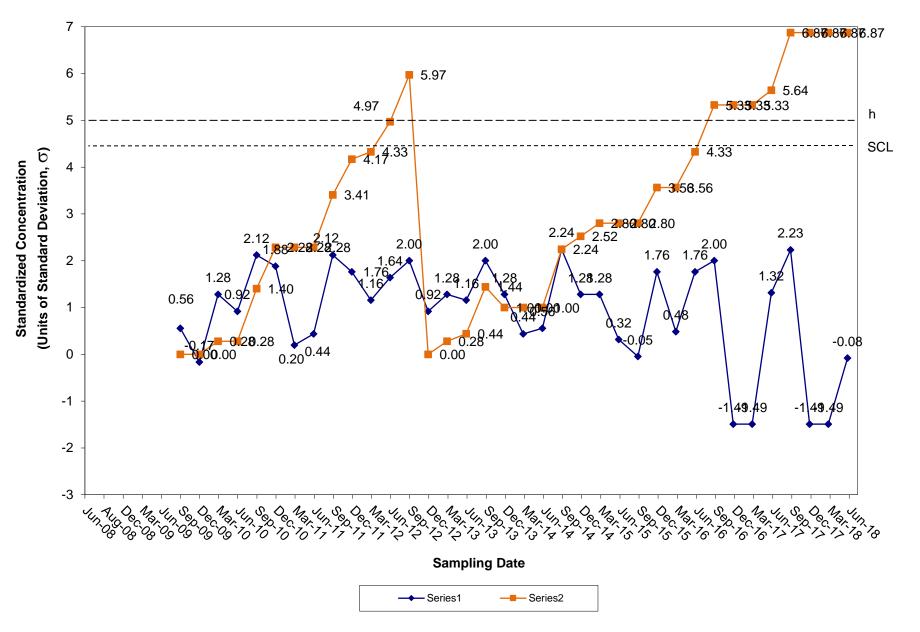


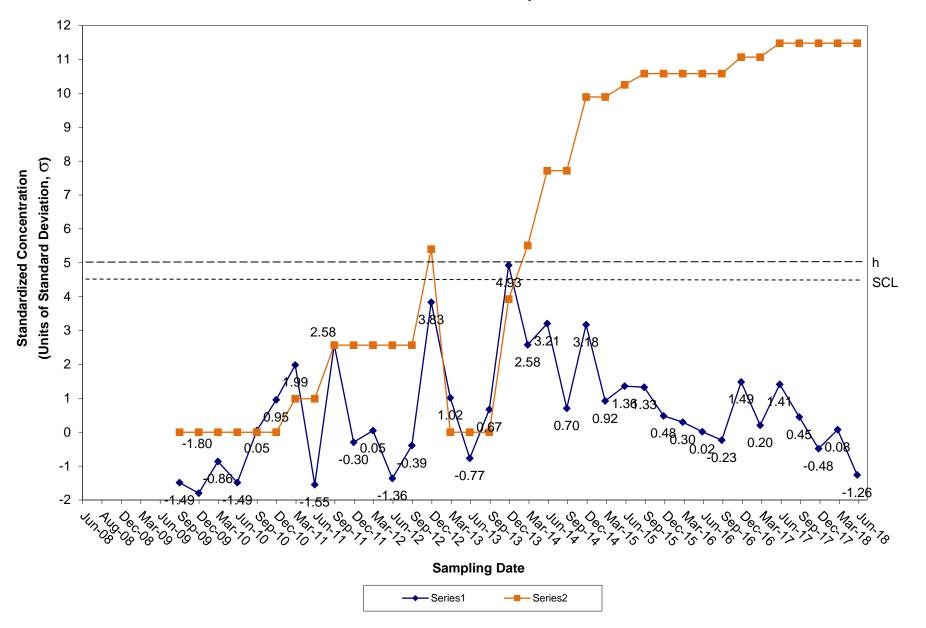
CUSUM Control Chart for Copper Tiverton Landfill Groundwater Complaince Well OW-15

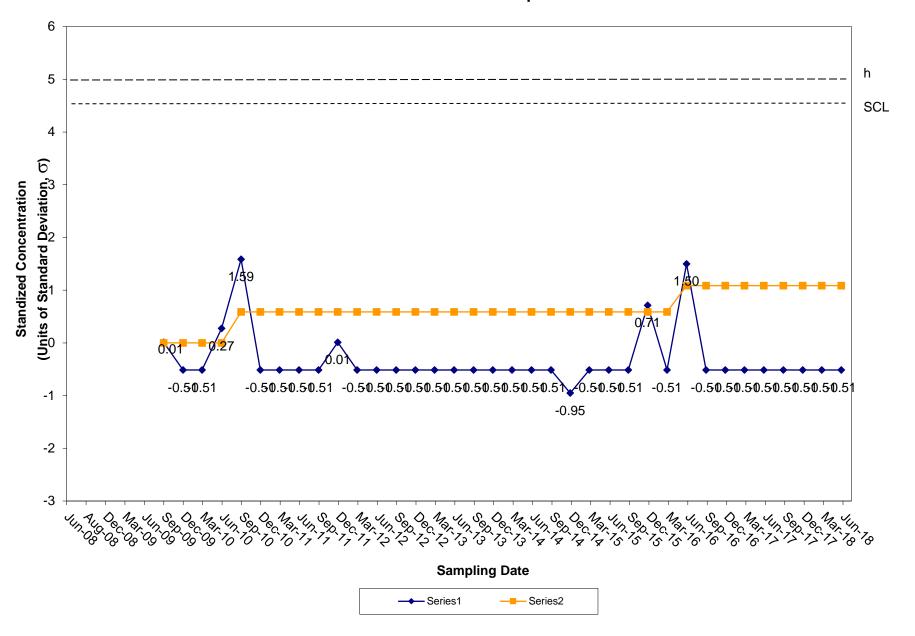


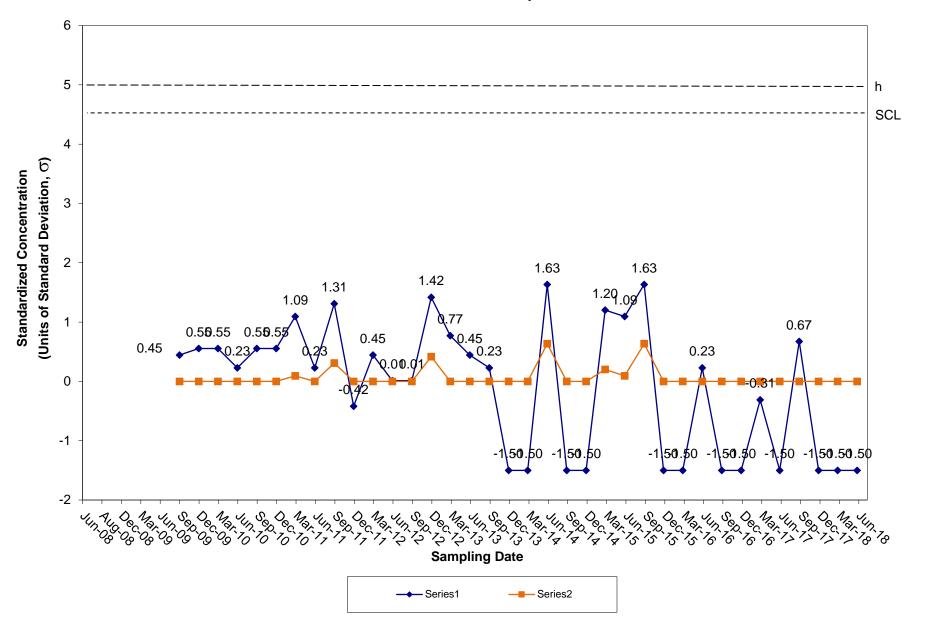

CUSUM Control Chart for Lead Tiverton Landfill Groundwater Compliance Well OW-15

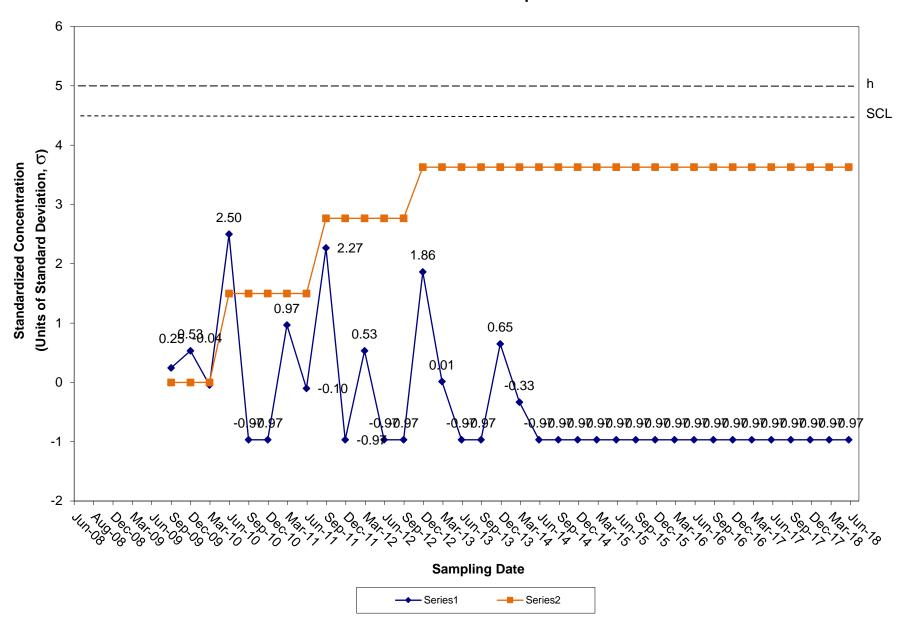

CUSUM Control Chart for Nickel Tiverton Landfill Groundwater Complaince Well OW-15

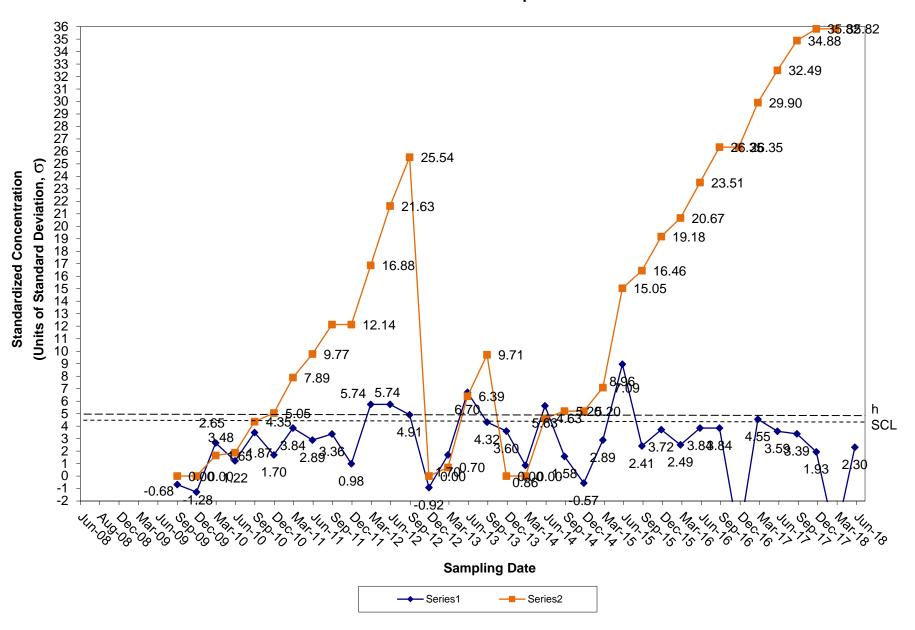

CUSUM Control Chart for Vanadium Tiverton Landfill Groundwater Complaince Well OW-15

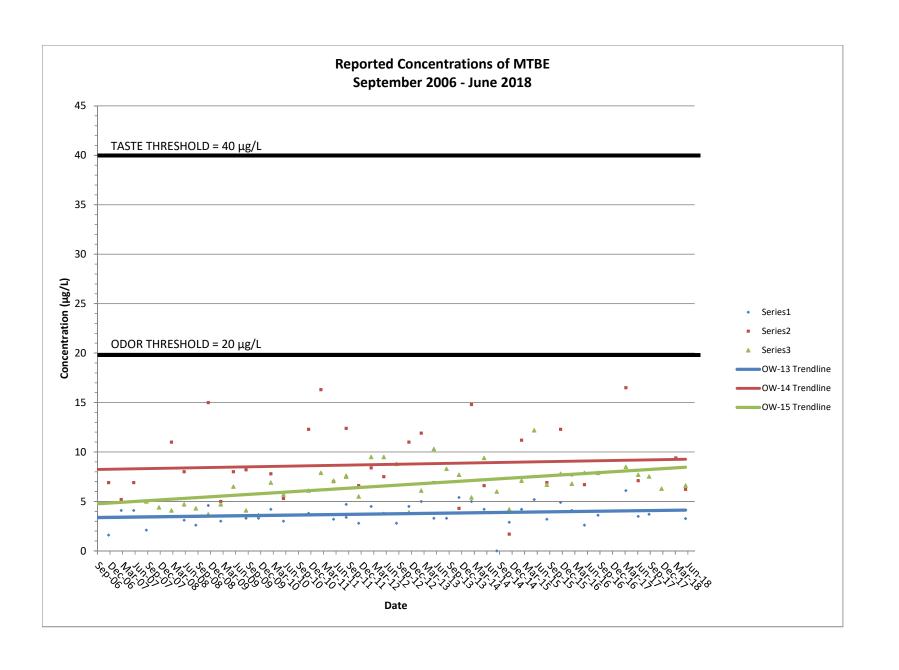

CUSUM Control Chart for Zinc Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Benzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Chloroethane Tiverton Landfill Groundwater Complaince Well OW-15


CUSUM Control Chart for 1,4-Dichlorobenzene Tiverton Landfill Groundwater Compliance Well OW-15


CUSUM Control Chart for Xylenes Tiverton Landfill Groundwater Compliance Well OW-15

CUSUM Control Chart for MTBE Tiverton Landfill Groundwater Compliance Well OW-15

<u>ATTACHMENT NO. 6</u> REPORTED CONCENTRATIONS OF MTBE FIGURE

ATTACHMENT NO. 7 FIELD SAMPLING DATA SHEETS

PROJECT NAME: TIVERTON LANDFILL PARE PROJECT NO.: 94139.24			DATE: WEATHER	6/7/2018 : Sunny 70s
WELL ID: OW-9	_		DIAMETER	2 (INCHES): 2
PURGE DATA				
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	16 0.4 Perista	_ feet _ gallons iltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN)	
WATER LEVEL DATA	<u>A</u>			
DEPTH: MEASURE POINT:	13.6 Top of Ca	_feet sing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RES	<u>SULTS</u>			
	REA	DING 1	REA	ADING 2
pH: SPEC. COND: TEMPERATURE:	5.74 0.062 11.6	pH UNITS mS/cm °C	5.76 0.068 11.7	pH UNITS mS/cm °C
NOTES:				
Samples were noted Samples were collect			dity based on visual inspe	ctions of samples.

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	6/7/2018 Sunny 70s
WELL ID: OW-7	_	DIAMETER ((INCHES): 2
PURGE DATA WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	11.8 feet 1.9 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	0 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULTS	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.52 pH UNITS 0.719 mS/cm 12.9 °C	6.52 0.720 12.9	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge Samples were collected at		oidity based on visual insp	ections of samples.

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24		DATE: WEATHER:	6/7/2018 Sunny 70s
WELL ID: OW-12	_		DIAMETER	(INCHES): 2
PURGE DATA				
WELL DEPTH:	16.2	_feet	MEASURE POINT:	Top of Casing
PURGE VOLUME (GAL):	2.10	_gallons	PURGE RATE (GPM):	0.1 +/-
PURGER TYPE:	Perista	altic pump	ELAPSED TIME (MIN):	15 +/-
WATER LEVEL DATA				
DEPTH:	3.5	feet	ELEVATION:	See Site Plan
MEASURE POINT:		of Casing	DEVICE:	Water Level Indicator
FIELD TESTING RESULT		DING 1	REAL	DING 2
рН:	6.07	pH UNITS	6.07	pH UNITS
SPEC. COND:	0.41	mS/cm	0.408	mS/cm
TEMPERATURE:	11.4	°C	11.3	°C
NOTES:				
Samples were noted as ge	nerally clea	ar and low in tu	rbidity based on visual ins	pections of samples.
Samples were collected at	2:00 PM.			

PROJECT NAME: PARE PROJECT NO.:	TIVERTON LANDFILL 94139.24	DATE: WEATHER:	6/7/2018 Sunny 70s
WELL ID: OW-13	_	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH:	14.5feet	MEASURE POINT:	Top of Casing
PURGE VOLUME (GAL): PURGER TYPE:	1.70 gallons Peristaltic pump	PURGE RATE (GPM): ELAPSED TIME (MIN):	0.1 +/- 15 +/-
FONGENTIFE.	r enstante pump	ELAF SED TIME (MIN).	13 +/-
WATER LEVEL DATA			
DEPTH:	4.4 feet	ELEVATION:	See Site Plan
MEASURE POINT:	Top of Casing	DEVICE:	Water Level Indicator
FIELD TESTING RESULT	<u>S</u>		
	READING 1	READ	ING 2
рН:	6.48pH UNITS	6.48	pH UNITS
SPEC. COND:	1.178 mS/cm 12.5 °C	1.171	_mS/cm °C
TEMPERATURE:	12.5°C	12.5	_°C
NOTES:			
Samples were noted as ge	enerally clear and low in tur	bidity based on visual insp	ections of
supernatant sample after a	a 15-minute decanting perio	od.	
Samples were collected at	5:30 PM.		

PROJECT NAME: PARE PROJECT NO.:	TIVERTON 94139.24	LANDFILL		DATE: WEATHER:	6/7/2018 Sunny 70s	
WELL ID: OW-14	_			DIAMETER ((INCHES): 2	
PURGE DATA						
WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:		eet gallons c pump		POINT: ATE (GPM): TIME (MIN):	Top of Casing 0.1 +/- 15 +/-	
WATER LEVEL DATA						
DEPTH: MEASURE POINT:	4.6 f	eet Casing	ELEVATIO DEVICE:	N:	See Site Plan Water Level Indicator	
FIELD TESTING RESULT	<u>S</u>					
	READING 1			READ	DING 2	
pH: SPEC. COND: TEMPERATURE:	1.51	oH UNITS mS/cm °C		6.39 1.524 15.6	pH UNITS mS/cm °C	
NOTES:						
Samples were noted as ge	nerally clear	and low in tu	rbidity based	on visual insp	ections of	
supernatant sample after a	15-minute d	ecanting per	iod.			
Samples were collected at	4:30 PM.					

PROJECT NAME: TIVERTON LANDFILL PARE PROJECT NO.: 94139.24		DATE: WEATHER:	6/7/2018 Sunny 70s
WELL ID: OW-15	<u>. </u>	DIAMETER	(INCHES): 2
PURGE DATA			
WELL DEPTH: PURGE VOLUME (GAL):	16.8feet 1.6gallons	MEASURE POINT: PURGE RATE (GPM):	Top of Casing 0.1 +/-
PURGER TYPE:	Peristaltic pump	ELAPSED TIME (MIN):	15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	7.6 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESUL	<u>TS</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.60 pH UNITS 1.365 mS/cm 12.7 °C	6.60 1.375 12.6	_pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as g	enerally clear and low in tur	bidity based on visual insp	ections of
supernatant sample after	a 15-minute decanting perio	od.	
Samples were collected a	t 5:00 PM.		

PROJECT NAME: PARE PROJECT NO.:			6/7/2018 Sunny 70s
WELL ID: OW-16	_	DIAMETER (INCHES): 2
PURGE DATA WELL DEPTH: PURGE VOLUME (GAL): PURGER TYPE:	45.8 feet 7.2 gallons Peristaltic pump	MEASURE POINT: PURGE RATE (GPM): ELAPSED TIME (MIN):	Top of Casing 0.1 +/- 15 +/-
WATER LEVEL DATA			
DEPTH: MEASURE POINT:	2.4 feet Top of Casing	ELEVATION: DEVICE:	See Site Plan Water Level Indicator
FIELD TESTING RESULTS	<u>S</u>		
	READING 1	READ	ING 2
pH: SPEC. COND: TEMPERATURE:	6.53 pH UNITS 0.772 mS/cm 12.4 °C	6.54 0.782 12.4	pH UNITS _mS/cm _°C
NOTES:			
Samples were noted as ge		oidity based on visual insp	ections of samples.

PROJECT NAME: TIVERTON LANDFILL DATE: 6/7/2018
PARE PROJECT NO.: 94139.01 /021 WEATHER: Sunny 70s

FIELD TESTING RESULTS:

SURFACE WATER LOCATION: SW-1

READING 1

pH: 6.92 pH UNITS SPEC. COND: 0.54 mS/cm
TEMPERATURE: 15.5 °C

SURFACE WATER LOCATION: SW-2

READING 1

pH: 5.66 pH UNITS SPEC. COND: 0.09 mS/cm
TEMPERATURE: 16.4 °C

SURFACE WATER LOCATION: SW-3

READING 1

 pH:
 6.70
 pH UNITS

 SPEC. COND:
 0.62
 mS/cm

 TEMPERATURE:
 16.5
 °C